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Section 1: Project Introduction 
The motivation for this project is to design, build, and test an automated mechanism that catches balls in a 
cup, and reliably deposits them into the correct basket. In doing so, we will learn methods in which to 
efficiently design mechanical linkages, how to program an arduino, and how to seamlessly integrate 
electrical and mechanical systems. This class will introduce the process of manufacturing parts based 
solely on the engineering prints drafted by other individuals, as well as creating universal drawings that 
can be read by any manufacturer. The environment that the mechanism must work in is shown in Figure 
1.1, with the mounting points at the bottom left corner and ball capture and release points above and to the 
right, respectively. 
 
 
 

 

 



 

Figure 1.1: Front and Top View of the Playing Field 

 
This project has many “hard metrics” that limit our design. The mechanism must be able to fit within the 
arena assembly and be manufactured in the winter 2017 semester using only machines available in the 
machine shop. Aside from the $100 allotted budget, the materials we use to make our mechanism such as 
metal alloys, motors, and fasteners, must be from those provided.  In order for the design to meet the 
target pickup and drop off points, the transmission angle must remain between 30 and 150 degrees 
throughout the entirety of the mechanism’s motion, so that the linkage does not buckle or bind. In practice 
the speed of the communication between sensors and motors will be limited by the processing speed of 
the Arduino microcontroller board.  

Table 1.1: Hard Specifications for Project 

Hard Specifications Target Values 

Arena Assembly (Volume, Mounting, 
Deposit/Goal Locations) 

Dimensions: See Figure 1 & 2 
Less than 15,000 in3 

Machines in X50 shop Manual Mill 
Manual Lathe 
Arbor Press 
Drill Press 
etc. 

Allotted Budget $100 

Time Winter 2017 Semester 

Transmission Angle 30° < angle < 150° 

Arduino microcontroller board 16MHz CPU 

 



Ball Size ~1” 

 
 
There are also several soft project metrics that distinguish performance of mechanisms. One of these 
includes the manufacturing skills of those that are creating our parts. The skills of the engineers producing 
our parts is not known, thus asking for difficult machining processes is not possible. General 
craftsmanship can also affect the project's performance and safety of the machine itself. Another metric 
includes the number of parts our mechanism is composed of. We cannot create a machine with excessive 
components because another manufacturer must produce these parts. General safety precautions should 
also be met, such as limiting the speed of the machine so it is not dangerous or removing sharp edges 
from design.  
 
Some other restrictions in design include the mechanism being able to catch the ball in a 1 or 2 inch cup 
from the chutes (figure 3), recognizing the color of the ball received, and dropping the ball in the correct 
bucket based on its color. The machine must be able to drop the maize and blue ball within the area 
specified in the bucket shown in figure 3 and toss the scarlet and grey balls in the net also shown in Figure 
2. 
 

 



 

Figure 1.2: Isometric View of the Playing Field 

Section 2: Design Processes 
The goal of the design process is to create a mechanism capable of moving the cup to the desired 
positions and orientations with a single motor and single cup.  Important things to consider in this design 
are the orientation of the cup with the ball droppers and goal and the transmission angle.  It is ideal for the 
cup to be close to vertical with the droppers to make it easier for the ball to drop into the cup.  The 
transmission angle, the acute angle between the coupler and the follower, should be between 30° and 150° 
in order the maintain a high mechanical advantage.  Having an angle that exceeds these bounds makes the 
mechanism less efficient.  A low moment of inertia is also important as this will allow the mechanism to 
move quickly and complete its objective in the allocated time. 
 
Initial designs to find link lengths and positions were made is SolidWorks.  Using sketch blocks, we 
created positions for the cups and found where the ground pivots would end up on the board.  Sketch 
relations allowed us try many positions since the entire sketch would automatically update with each 
change.  

 



 

 

Figure 2.1: Initial SolidWorks Sketch Block 

 
We created 3D models of our mechanisms in SolidWorks.  We then created a dynamic model of the 
mechanism in Adams to see if the provided motor delivers enough power to meet the motion 
requirements of the design.  We also analyzed the angular velocity and torque of our mechanism.  Using 
this information from the Adams model, we compared each of our designs and selected the one that best 
met our specifications. 

 

Section 3: Design Selection 
The Pugh chart that we used to select a final design is depicted below.  Our strategy is to use a 1 inch cup 
in order to gain the most amount of points possible.  This is why the angle of the cup relative to the tube 
that drops the marbles is given a value of 2 because it is important that no marbles are dropped.  Having 
the angle of the cup relative to the tube be low helps prevent this from happening as having an angled cup 
results in a greater chance that the marble will not fall in the cup. The angle relative to the basket at the 
final position is given a value of 1 because the speed of the mechanism is more important to get the 
marble in the basket or net.  The power required is given the high value of 3 because if the mechanism 
uses more power than the motor can provide, it will not be able to move and we will be unable to move 
any marbles.  The transmission angle deviation is give the highest weight of 4 because if it exceeds 60 
degrees at any point in the motion, efficiency is greatly reduced.  Speed is given the value of 2 because 
the mechanism must be able to move quickly to deposit marbles into the basket.  The ADAMS analysis 
for each design that we used to determine values for the Pugh chart is depicted in table 3.2 below. 
 

 



Table 3.1: Pugh Chart of Designs 

Requirement Weight Mitch’s 
Design 

Nikko’s 
Design 

David’s 
Design 

Austin’s 
Design 

Marcos’ 
Design 

Position 1 angle 
compared to 
tube 

2 1 0 0 0 0 

Position 2 angle 
compare to tube 

2 0 0 1 0 1 

Final Position 
angle relative to 
basket 

1 0 1 1 0 1 

Power required 3 1 0 0 0 0 

Transmission 
Angle 
Deviation 

3 1 0 0 0 0 

Speed 2 0 0 0 0 0 

Total 8 1 3 0 3 

 
After comparing each of the designs, we we decided Mitch’s design was the best option for our strategy. 
Designs were very similar in terms of power required and speed, but had slightly different angles relative 
to each tube in the first two locations.  Mitch’s design had the polycarbonate tube directly underneath the 
marble drop tube and nearly vertical whereas Marcos’ design was not as straight.  The angle of the cup is 
very important for our strategy, since we are using the one inch cup. Being able to catch the cup was also 
seen as very important, simply because it assured a given point value of 10 (double of dumping the ball). 
We determined that Mitch’s design would be able to catch the marbles much more reliably and effectively 
and therefore is the design we have chosen. Summary of these choices is shown in table 3.2 below. 

 

 

 

  

 



Table 3.2: Analysis of Each Design 

 Mitch’s 
Design 

Marcos’ 
Design 

Nikko’s 
Design 

David’s 
Design 

Austin’s 
Design 

Power Output 
[N-m] 

.4 .5 .5 .6 .4 

Volume 
Measurements 
[in3] 

6.85 13.82 8.68 15.67 7.55 

Initial 
Transmission 
Angle 
Deviation 
[Degrees] 

19.73 25.5 13.98 -24.41 8.78 

Final 
Transmission 
Angle 
Deviation 
[Degrees] 

37.24 11.3 19.4 -34.03 41.98 

 
 

Section 4:  Final Linkage Design 
Table 4.1 and figure 4.1 show the 3 link lengths of the mechanism from the ground points to their 
connection to the coupler itself. 
 

Table 4.1 & Figure 4.1: Length of Each Link 

Link Final Link Lengths [Inches] 

Input 10.72  

Follower 8.68 

Coupler .74 

 

 



 
 

The table below shows the transmission angle at each of the 3 cup positions. It is important that these 
values do not exceed an angle of 150° or 30° so that the machine does not bind. 
 
 

Table 4.2 & Figure 4.2: Transmission Angle for All Cup Positions 

Cup Position Transmission Angle [Degrees] 

Under the left tube 115.09 

Under the right tube 67.57 

Over the basket 123.63 

 

 



 
 
 
 
 
 
The following table shows the deviation between the measured transmission angles to 90°. Comparing 
our angles to those allowed, our design will stay within the allowed interval of plus or minus 60°. This is 
important to avoid binding in the mechanism. 

 

Table 4.3: Transmission angle deviation for all cup positions 

Cup Position Transmission Angle Deviation 

Under the left tube 25.09 

Under the right tube 22.43 

Over the basket 33.63 

 

 



Other important values include our distances to the bottom left mounting hole. This is to ensure that the 
ground pivots are in a relatively close location to the mounting area so that design of a base plate will be 
easier. 

 

Table 4.4 & Figure 4.3: Location of the Ground Pivots Relative to Bottom Left Mounting Hole  

Pivot Locations  <X Coordinate, Y Coordinate> [inches] 

Input ground pivot <2.09, 2.51> 

Follower ground pivot <2.32, 4.78> 

 

 
For our project, we decided to choose the 1 inch cup. This decision was reached after deciding it was 
worth creating a more challenging scenario for more points. 

Table 4.5: Size of Cup Inner Diameter 

Size of Inner Diameter 1”  

 

 

  

 



Section 5 :  Final Team CAD 
 

 

Figure 5.1: Model of Playing Field made with Lab Measurements 

 
The mechanism is almost entirely made of 0.25 inch thick aluminum, with the exception of the 3-D 
printed coupler, and the cup 1” polycarbonate cup attached to the top of the coupler. Most of the 
components in this mechanism can be manufactured using the waterjet, or the 3-D printer. The 
mechanism can be seen below from the different views. 
 

 



 

 



 

 

Figure 5.2: Mechanism and Its Full Range of Motion/Isometric View 

 

 



The joint design used in this mechanism is consistent with the proper joint design that is shown in Figure 
5.3, except for replacement of the bushings with bearings. This substitution was made to further reduce 
friction within the joints. The outer diameter of the bearing is approximately twice as large the outer 
diameter of the bushing, so the link design and joint design had to be adjusted to accommodate the larger 
size. The cross section of the coupler joint is shown below in Figure 5.4, as well as the cross section of the 
joints on the mounting board in Figure 5.5. 
 

 

Figure 5.3: Cross Section Model of Joint 

 

Figure 5.4: Cross Sectional Views of the Joints Connecting the Coupler to the Input and Follower 

 

 



 
 

Figure 5.5: Cross Sectional Views of the Joints Connecting the Mounting Board to the Input and 
Follower 

 
 

 
 
 
 
 
 
 
 

 



Below is a figure of the total volume the mechanism encompasses at its initial position. This is measured 
from the start of the backboard to the base plate. The height and length are from the top corner of the cup 
to the bottom right corner of the baseplate. The CAD volume approximation was 27.73 cubic Inches. 
 

 

Figure 5.6: Mechanism with Volume Measurements Displayed 

 
 
 

 



Our baseplate system will be mounted to the playing field area via Round Aluminum Spacers. These 
Spacers will be fixed with the playing field and baseplate via bolts and press fit dowel pins. 
 

 

Figure 5.7: Board mounting system 

 
 
 
 
 
 

 
 

 



The figure below shows the the adjustable hard stops on the mounting board. The hard stops are secured 
to back side of the mounting board by 3/8ths cap screws. The hard stops can be adjusted vertically to stop 
the linkage system at different angles.  
 

 

Figure 5.8: Adjustable hard stop system on the board 

 
 
 
 

 
 
 
 
 
 

 



Our CLC cup mounting will be achieved by glueing the cup to the 3D Printed part. The 3D part is made 
to fit the cup, as seen in the figure below. The inner circle of the 3D part will slide inside the cup and has 
a curved shape to better fit the ball. At the bottom of the inner circle there is a hole to allow the light 
sensor to read the balls color. The inner curved part was designed to allow the ball to sit close to the light 
sensor to ensure accuracy.  
 
The 3D printed part also has a slot built in on one side to allow access to the color sensor. The color 
sensor will be fixed into the 3D part by drilling a hole or glueing the sensor. 
 

 

Figure 5.10: 3D Printed Coupler 

 
 

 
 

 



Section 6 :  Preliminary Team ADAMS 
Primary testing of the mechanism’s final design was done using the ADAMS modeling program. The 
figure below shows the four-bar linkage in the ADAMS program without the many complex pieces of the 
joints included. Angular displacement, angular velocity, torque  required, and power required to run the 
mechanism were calculated using the simulation and acceleration features in the program. The graphs 
below show the results of these simulations. Angular acceleration was calculated according to the 
Equation 6.1 for angular acceleration: 

 

α =
t2
4θ  Eq. 6.1 

Our theta was determined by measuring the angle change of the input link during a full range of motion. 
Using CAD and ADAMS, this value was determined to be 71.2°. ADAMS simulation was utilized to 
determine a proper t value. This was done by tweaking the time until finding a satisfactory power 
consumption, which resulted in a minimum time of 0.45 seconds. The final calculated angular 
acceleration was thus 1406.41 deg/s2 

 
 
The Figure below shows the model that was made in ADAMS and then used in simulation. The 
mechanism was given an acceleration that was used to model the motor, and preliminary data was 
collected on the mechanism’s function. The links and coupler were set as aluminum, and the cup and 3D 
printed part were set as plastic. 

 

Figure 6.1: Mechanism in Adams 

 

 



Figure 6.2 below shows the angular displacement of the input link as it travels from the left-most position 
under the left tube to the right-most position next to the bucket. The input link travels 71.2 degrees from 
right to left. 

 

Figure 6.2: Angular Position of Input Link 

 
The graph of our angular velocity (Figure 6.3) takes the shape of a ‘V’ with a rounded point at the bottom. 
Considering acceleration is the derivative of the velocity function, and the slope from 0 to 0.225 seconds 
is constant, this implies we have a constant acceleration with a linearly changing velocity. At 0.225 
seconds the acceleration is reversed and the slope is now in the positive direction. The point where the 
accelerations change sign is the point of maximum angular velocity in the negative direction where we 
have about -320 degrees per second. The linkage then decelerates to zero angular velocity as it approaches 
the hardstop. 
 

 

Figure 6.3: Angular Velocity of Input Link 

 

 



The graph below shows the results of the ADAMS simulations for the torque on the input link due to the 
acceleration that is applied. The graph shows a group of spikes near the middle of the simulation, and also 
a small spike in the beginning of the simulation. These spikes are due to the application of the 
acceleration at intervals in time switching directions, and countering the inertia of the input link as it 
changes directions of acceleration.  

 

Figure 6.4: Torque on Input Link 

 
Using equation 1 above, angular acceleration was calculated. This acceleration was applied to the input 
link in the ADAMS program to simulate the motor in the system. Using trial and error in ADAMS, it was 
determined that the mechanism could complete one trip from left to right in just under 0.5 seconds 
without exceeding a limit of 1 newton-meter/second, or 1 watt, power consumption. However, the graph 
generated from the ADAMS does not take into account the static friction in the system. This friction 
would cause the graph to have a spike near the beginning of its motion.  
 

 

Figure 6.5: Power Consumption from Left to Right-most Position 

 

 



Section 7: Motion Generator Revision 
No changes were made to the motion generation since Gate 1 Review. 
 
 

Section 8: Evaluation of Received Designs for Manufacturing 
 
Coupler: 
All of the holes on the coupler are to a three decimal place precision even though the reamers for the 
holes are not provided in the shop and the manufacturing plans says to use drill bits to achieve the hole 
diameters. I believe that the holes were meant to be two decimal place precision and drilled instead of 
reamed. Some of the holes appear both in the manufacturing plan and the DXF waterjet file so it is 
somewhat unclear what holes we are responsible for, because we do not have an ORD file. If they do plan 
on water jetting the holes, we would advise against it, because the waterjet does not create holes very 
precisely.  In addition the 1.89” dimensions for the relative distance between 2 holes is located within the 
part and should be to a 3 decimal place precision.  The 0.089” dimension is listed twice instead of using 
the “X2” notation, which would have been a little more efficient, and the manufacturing plan 
unnecessarily  prompts us to clamp the part in the vise in steps 3-5. Even though it is obvious where the 
datum is in the drawing, we were not asked to use an edge finder to locate a datum anywhere in the 
manufacturing plan. All serious issues have been emailed to the other team.  

 



 

Figure 8.1: Coupler Drawing 

 

 



 

Figure 8.2: Coupler Manufacturing Plan 

 
 
 
 
 
 

 



Plate:  
The format of this drawing is not in the standard ANSI format.  The manufacturing plan includes steps to 
drill and ream holes to 0.246” when there are no holes that match that description in the drawing.  The 
plan also says to drill base plate attachment holes to 0.375”, while the drawing says to drill them to a W 
bit.  The drawing also does not include the decimal hole size for the W thru holes. There were no major 
issues that needed to be included in the email to the design team. 
 

 

Figure 8.3: Plate Drawing 

 

 



 

Figure 8.4: Plate Manufacturing Plan 

 
 
 
 

 



Hardstop: 
The outer diameter of the hardstop was dimensioned in the wrong view; it should have been dimensioned 
in the top view. Manufacturing the off-center hole through the part will be a challenge, as there is no good 
spot to use as a datum. There was not a manufacturing plan for this part, but the design team should have 
included how to zero the mill at the center of the outer circumference of the part using a dial indicator or 
with another method. Moreover, the plan should have included both the size of the drill bit to use for the 
off-center hole, and the whether the hole should be a through hole or a blind hole. For this part, the hidden 
lines in the top drawing suggest that the hole is a through hole that will have a ⅜” bolt that secures the 
part to the mounting plate. There were no major issues that needed to be included in the email to the 
design team. 
 
 

 

Figure 8.5: Hard Stop Drawing 

 
 
 

 

 



Link 1 
The link is shaved down on the sides with a three decimal place precision in the plunging diameter of 
0.344”. The end mill that would be required to do this is not available in the shop and this would not be 
able to be done to a three decimal place precision. The depth of this shaving has to be fairly accurate, but 
there is no need for three decimal plate precision on the shape of the depth. There is also not a 0.344” 
reamer to make the holes on either end of the lever. In addition the manufacturing plan did not mention 
the measurement of bearings for these press fit holes or the pre drills necessary for these reams. The 
datum specified in the drawing is impossible to achieve, within reason, because I would have to use a dial 
indicator to find where that arcs on the end of the links ends. This impossible datum won’t be an issue for 
functionality, however, because we can get close to the datum and get the relative hole locations done 
precisely, but the holes won’t be exact in X relative to the waterjet profile. All serious issues have been 
emailed to the other team.  

 

Figure 8.6: Link 1 Drawing 

 

 



 

Figure 8.7: Link 1 Manufacturing Plans 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Link 2 
The link is shaved down on the sides with a three decimal place precision in the plunging diameter of 
0.344”. The end mill that would be required to do this is not available in the shop and this would not be 
able to be done to a three decimal place precision. The depth of this shaving has to be fairly accurate, but 
there is no need for three decimal plate precision on the shape of the depth. There is also not a 0.344” 
reamer to make the holes on either end of the lever. In addition the manufacturing plan did not mention 
the measurement of bearings for these press fit holes or the pre drills necessary for these reams. The 
datum specified in the drawing is impossible to achieve, within reason, because I would have to use a dial 
indicator to find where that arcs on the end of the links ends. This impossible datum won’t be an issue for 
functionality, however, because we can get close to the datum and get the relative hole locations done 
precisely, but the holes won’t be exact in X relative to the waterjet profile. All serious issues have been 
emailed to the other team.  
 

 

Figure 8.8: Link 2 Drawing 

 

 



 

Figure 8.9: Link 2 Manufacturing plan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Standoff 
The standoff is listed as being made on a mill, but it would be far easier to make on a lathe.  It is just a 
hole in a circular rod so it would be far faster to lathe this part.  No manufacturing plan is provided, we do 
not know how we are intended to machine it.  The 1.000” dimensions for the cylinder is also displayed in 
the wrong view.  It should be on the side view of the part, since it is a cylinder and not a hole. 

 

Figure 8.10: Standoff Drawing 

 

 

 

 
 
 

 



Section 9:  Evaluation of Received Manufactured Parts 
A majority of the parts received met the specifications laid out in the drawings and were manufactured on 
time.  All of the lathe parts were properly machined and deburred.  The milled parts had correct 
dimensions but were not deburred. 
 
 

Section 10: Energy Conversion Introduction 
Transmissions are used to convert power from one form into another.  A transmission is needed in order 
to convert different types of motion, such as rotary to linear motion.  It can also convert low-torque high 
speed motion into high-torque low-speed motion. Transmissions also result in a slight loss of efficiency, 
so that must be considered for calculations and design. Some examples of transmissions are gears, belts, 
and chains.  For this project, we will manipulate the torque/speed curve of the motor to meet the exact 
performance requirements of our mechanism. The design of a transmission is limited to a certain input 
voltage, rotational speed, and torque output in order to avoid failure or damage. If the input voltage is too 
large, the load on the motor may cause the motor to run too fast, or produce too much torque, which will 
cause the motor to fail. If the motor turns too fast, the motor will experience mechanical failure, but if the 
motor produces an excessive amount of torque, the current inside grow too large, and the motor will 
experience electrical failure. There is a limitation on the transmission ratio we can achieve due to the size 
constraints of the project.  A larger transmission ratio typically requires a large amount of space. 
Exceptions include transmission systems like a harmonic drive, but this sort of system would exceed the 
budget of this project. 
 
 

 

  

 



Section 11: Transmission Ratio and Type Determination 
We had to determine the transmission ratio required to move between its starting and ending positions. 
These endpoints are depicted in Figure 11.1 below. 

 
Figure 11.1: Starting and ending position of the mechanism 

 
The first method we used to determine transmission ratio was inertia matching.  As the linkage moves, its 
mass distribution changes and therefore inertia does as well.  The torque required to move the mechanism 
also changes during this motion.  We found the mechanisms total inertia and the motor inertia to find a 
transmission ratio. 
In order to find the start up torque of the motor, we have to calculate the moment of inertia of the motor 
using Equation 11.1 below where I is the total moment of inertia as seen at the motor side, Im is the 
moment of inertia of the motor, IL is the inertial of the load, and N is the transmission ratio. 

 
Eq. 11.1 

Next, we found the angular acceleration of the motor αm using equation 11.2 where αL is the angular 
acceleration of the load and N is the transmission ratio. 

 
Eq. 11.2 

The start up torque of the motor T is then given by equation 11.3 where I is the total moment of inertia 
seen by the motor and αm is the angular acceleration of the motor. 

 



 
Eq. 11.3 

The purpose of inertia matching is to minimize the motor torque through the transmission ratio.  The 
optimized transmission ratio is given by setting the derivative of the start up torque to zero. This 
simplifies down to equation  11.4. 

 

 
 

Eq. 11.4 

In order to find the moment of inertia of the entire mechanism, we found the mass and moment of inertia 
of the input link, coupler, and follower link.  The parallel axis theorem states that if a body is made to 
rotate about a new axis parallel to its old one displaced by a distance r, its moment of inertia I with respect 
to the new axis is related to Icm, the moment of inertia about the center of mass, by equation 11.5. 
 

 
Eq. 11.5 

For the coupler link, we need to find its instant center between the ground and coupler link.  To do this, 
we find measurements R1-R5 that measure the lengths of each link and the length of the line between the 
midpoint of the coupler and the intersection point between the lines of the two links.  R1 is the length of 
the input, R4 is the length of the follower, R5 is the length of the coupler, R2 is the distance between the 
intersection of this input in coupler to the intersection of R2 and R4, and R3 is the distance between the 
intersection of the follower with the coupler and the intersection of R2 and R4.  These lengths are labeled 
in figure 11.2 below. 

 
Figure 11.2: Measurements R1-R5 displayed the linkage in the starting position 

 



 
By using these values R1-R5, and the moment of inertia of the linkages Iinput , Icoupler, and Ioutput,, we can 
find the total moment of inertia Itotal using Equation 11.6 below. 
 

 

 
Eq. 11.6 

 
The motor with gearbox used for this project has a moment of inertia of 25000 (g*cm2).  Using Equation 
11.4 with this Imotor and the Itotal found by Equation 11.6, we can get the ideal transmission ratio for our 
mechanism.  We found the required transmission ratio for three positions along the motion of our 
mechanism: the linkage in its initial position, directly below the second marble drop tube, and at the end 
of its motion.  Table 11.1 below summarizes this information. 
 

Table 11.1: Inertia of the mechanism at three different positions and the required transmission 
ratio 

Position R1 (cm) R2 (cm) R3 (cm) R4 (cm) R5 (cm) Total Inertia 
(grams*cm2) 

Transmission 
Ratio 

Initial 10.72 23.35 21.46 8.68 12.7 8735.79 0.59 

Middle 10.72 6.61 6.39 8.68 6.49 19297.29 0.88 

Final 10.72 2.4 2.84 8.68 2.6 57670.38 1.52 

 
The major discrepancy between this model and the actual mechanism comes from that the mass we used 
for this calculation is different from the actual mass.  It does not account for glue used to connect the 
coupler and color sensor, the color sensor itself, and some of the fasteners.  This results in a calculated 
transmission ratio that is slightly smaller than what the mechanism actually needs to work properly. 
 
The second method we used to find the optimal transmission ratio was finding the minimal torque our 
mechanism required to overcome gravity.  Gravity will generate a torque on the linkage and we need to 
ensure that our motor is strong enough to overcome this torque.  In order to generate a transmission ratio 
we created a simplified mechanism that only contained the coupler, cup, link, and mounting board.  We 
imported this mechanism into ADAMS.  The masses found in SOLIDWORKS were assigned to the 
components, joint relationships were established, and from this torque values were obtained.  Pictures of 
the mechanism in ADAMS can be seen in Figure 11.  
 

 



 
Figure 11.2: Initial and final positions of the mechanism in ADAMS 

 
The max output torque of the gearbox motor at the shaft after a safety factor 5 is .13 N-m.  By dividing 
the torque required by this output torque, we find the required transmission ratio to overcome gravity. 
Table 11.2 summarizes the torque required to lift the mechanism at its initial and final positions and the 
corresponding transmission ratio.  This gravity compensation analysis is also susceptible to the same error 
as inertia matching; the mass of the mechanism in the analysis is less than the actual mechanism.  The 
transmission ratios we find in this section will be smaller than the actual transmission ratio required. 
 

Table 11.2: Max torque and transmission ratio for the beginning and end of the mechanisms range 
of motion 

Position Initial Angle (degrees) Max Torque (N-m) Transmission Ratio 

Beginning 63.41 0.0696 0.535 

End 134.65 0.2143 1.648 

 
The final method we used to determine the transmission ratio was to examine the resolution of the 
encoder.  We want a transmission that gives a positive resolution of the cup at 0.5 mm.  We want a fine 
resolution because numerical derivatives are used to calculate the cups velocity.  This calculation occurs 
100 times a second resulting in a velocity resolution of 0.5mm/0.01s = 50 mm/s. The encoder on the 
motor has a base resolution of 64 counts per revolution so at a full revolution of 360 degrees, the gearbox 
yields 1920 counts. This is 360/1920 = .1875 degrees for every encoder count.  This number divided by 
the transmission ratio N gives us the angular resolution of the input link as seen be seen by Equation 11.7 
where r1 is the length of the input link. 

 



 

 
Eq. 11.7 

By rearranging equation 11.7 to be in terms of  transmission ratio N, we can compute the transmission 
ratio using Equation 11.8. 

 

 
Eq. 11.8 

Since the input link has a length of 10.74 inches, we need a transmission ratio greater than 1.78.  All of 
the transmission ratios for each method can be seen in Table 11.3 below. 

Table 11.3: Max transmission ratio for each method of calculation 

Method Max Transmission Ratio 

Inertia Matching 1.52 

Gravity Analysis 1.648 

Encoder Resolution 1.78 

 
The max transmission required for each method were very similar in value.  The greatest transmission 
ratio is 1.78, which is the ratio required in order to get the necessary encoder resolution.  Therefore, the 
transmission ratio of our mechanism must be greater than 1.78.  The transmission ratio we have chosen 
for our mechanism is 2.00. 
 
Different options for transmission methods include gears, pulleys, timing belts, and chain and sprockets. 
The pugh chart that compares each method is in Table 11.4 below. 

Table 11.4: Pugh chart comparing transmission types 

Selection 
Criteria 

Weight Gears Pulley Timing Belt Chain and 
Sprocket 

Cost 2 0 3 2 -1 

Reliability 5 0 -2 0 -1 

Simplicity 2 0 3 2 1 

Ease of 
Assembly 

3 0 3 2 1 

Aesthetics 1 0 -3 -2 1 

 



Total - 0 8 12 -1 

 
Cost is given a weight of two because the transmission choice must fall within our $100 budget.  It is not 
higher because a majority of the systems fall within this range.  Gears are used as the base system and 
they cost about $30 each.  Pulleys are the cheapest option and we can buy them for less than 10 dollars 
each which is why they have a value of three.  The timing belt is slightly more expensive than the pulley 
but still far cheaper than the gears.  A chain and sprocket system is more expensive than the gears, since 
we would have to buy a precision chain, which is why it has a negative one.  Reliability is the most 
important factor because our transmission must reliable and accurately move to set positions in order to 
catch and throw marbles.  This is why it has a weight of five.  The pulley is much less reliable than the 
gear as it relies on friction to rotate and can slip.  The timing belt has the same value as gears because is 
has teeth  like the gear and will consistently return to the same location.  The chain and sprocket has a 
negative one because while it has teeth to prevent slipping, it is more prone to slack and will be more 
difficult to tension accurately.  Simplicity is given a weight of two because we have a limited amount of 
tools and materials to create this system so it cannot be overly complicated.  Gears are the lowest because 
we have to worry about ensuring the gears are meshing, while with the other systems have a much more 
flexible mounting system.  A pulley is the simplest system, shortly followed by a timing belt, followed by 
a chain and sprocket.  Easy of assembly is given a three because like simplicity, we have a limited set of 
teels and materials to assemble this system.  The weights are the same as they are for simplicity for the 
this reason.  Aesthetics is given a weight of one because it is not important at all to the success of the 
mechanism and is purely for show.  The chain and sprocket given the highest value of 1 since it is 
considered to be the most visually impressive.  Based on this pugh chart, the transmission that we have 
chosen is the timing belt.  It is very reliable, easy to make, and is cheap.  In order to make a timing belt 
transmission system, we will need to buy a timing belt, input pulley, and output pulley.  The components 
and manufacturer of each part are described in Table 5 below. 
 

Table 11.5: Transmission components and sources 

Component Manufacturer Part Number Cost 

¼” MXL Series 
Dust-Free Timing Belt 

McMaster-Carr 1679K69 $2.55 

Mxl Series Timing Belt 
Pulley 
for 1/4" Maximum Belt 
Width, 20 Tooth 

McMaster-Carr 1375K42 $11.02 

Mxl Series Timing Belt 
Pulley 
for 1/4" Maximum Belt 
Width, 40 Tooth 

McMaster-Carr 1375K55 $14.24 

 

 



Section 12:  Final Transmission Design  

 

Figure 12.1: Full CAD Model with Transmission 

 
The final transmission design for our mechanism (figure 12.1) utilizes a timing belt with a 2:1 
transmission ratio and adjustable motor position along parallel slots in the mounting plate. The timing belt 
is cheap, has lower tolerances than meshing gears, is lightweight, and doesn’t require lubrication. The 
parallel slot in the mounting plate shown in figure 12.2 will allow about 0.25” of linear tensioning which 
will allow our transmission design to be flexible and accommodate stretching of the timing belt.  

 



The transmission will include a 0.685”OD, 20 tooth aluminum timing belt pulley on the motor shaft, 
input, a 1.21”OD, 40 tooth aluminum timing belt pulley on the output, and a 0.25” urethane timing belt 
coupling the two. The pulleys come with set screws that constrain them along the axis of the shafts and 
the output pulley will have a 1/16” hole in it with  a spring pin for transferring torque to the input link of 
the mechanism.  

 

Figure 12.2: Horizontal Adjustment of Motor 

The motor can be moved along the mounting plate through parallel slots and has four points of contact, 
two bolts with washers, along each slot, This allows the motor to have a lot of adjustability for tensioning, 
and enough friction to keep the motor from moving during operation of the mechanism (Figure 12.2). The 
motor can also be moved off the plate with spacers, to accommodate for any manufacturing error that may 
cause misalignment between the two pulleys (Figure 12.3). 

 

 

Figure 12.3: Vertical Adjustment of Motor  

 

 



The volume of the mechanism is 506.45cm3 and the volume of the transmission design, including motors, 
pulleys, belt, mounts, and fasteners, is 91.873cm3.  
 
 

Section 13: Gravity Compensation 
Given that gravity will affect the acceleration and the deceleration of our linkage mechanism, we needed 
to compensate for its effects. The method used to compensate for gravity involved computing the center 
of mass and holding the linkages stationary against gravitational acceleration in ADAMS. Using a safety 
factor of 5, the available torque from our motor was 0.13N-m. The values gathered from ADAMS were 
from using a constant torque to hold the linkage system in one position at either extreme of its motion; 
this is where gravity would have the greatest effect. The transmission ratio was found by dividing the 
simulated torque by the motor torque with a safety factor of 5. From this data, the voltage that we wish to 
run the motor at can be found in each position respectively.  For our specific mechanism, our 
compensation minimum gear ratios were 0.535 in the leftmost position and 1.648 in the rightmost 
position and our torque required was .2413 Nm and .0696 Nm respectively . Calculating these ratios and 
their respective voltages is necessary in this project because gravity will affect the angular velocity of the 
coupler and how the ball is released when depositing it into the box or flinging it into the net. 
Furthermore, the transmission ratios give us the minimum torque required to move the mass of the 
linkages; if the transmission ratio (N) is smaller than the recommended ratio, the linkages will not move 
and the motor would fry if it is ran at a voltage outside of the safe long-term range. Obviously, we want 
the minimum torque and voltage necessary to complete the deposit motion of the linkage system. This 
will also result in the least amount of power being consumed to perform the task. To calculate the torque 
required to hold the mechanism still at each position, we use Equation 13.1. 

T  / N  T R =  Gravity   Eq. 13.1 

Equation 13.1 shows that the torque required is the torque needed to counteract gravity divided by the 
transmission ratio on the belt and pulley transmission. Using the torque values calculated in the ADAMS 
simulation at the left and rightmost positions, we can get a torque required after applying our chosen ratio 
of 2. Table 13.1 shows the required torque after applying transmission ratio. 

Table 13.1: Torques Required to overcome Gravity After Transmission Ratio 

Position Torque required T Gravity  Torque After Ratio T r  

Position 1 (left-most) 0.2413 Nm 0.1201 Nm 

Position 3 (right-most) 0.0696 Nm 0.0348 Nm 

 

 T )/(K )  V s = ( R * R t   Eq. 13.2 

Equation 13.2 requires the use of constants not directly given in the Pololu motor specs. R and Kt are not 
listed on the spec sheet, but can be found using the specs that are shown. R was given by a matlab 

 



program provided by the site, while K(slope) was found by using no load speed and stall torque at 10V. 
The following equation was then used to solve for Kt, assuming the motor is linear and conservative. All 
units were converted to metric scale, variables used are in Table 13.1. 

/I  K t = T s s   Eq. 13.3 

Table 13.1: Variables Used to find Motor Constants 

Variable Value 

R 2.4 Ohms 

ω0  27.49 Rad/s 

T s  0.583 Nm 

Is  3.75 A 

K t  0.155 Nm/A 

 
After solving for Kt, we can now use equation 13.2 to find Vs at the two most extreme points in 

the mechanisms range of motion. 

Table 13.2: Voltage required at Extreme positions  

Position Torque Required after Ratio 
T r  

Voltage required 
V s  

Position 1 (left-most) 0.1201 Nm 1.859 V  

Position 3 (right-most) 0.0348 Nm 0.537 V 

 
The maximum voltage does not exceed our limit of 10V at the two extreme cases to overcome gravity. 
Our current safety factor against shorting the motor is then 5.377 when trying to begin motion. 
 
 

Section 14: Power Analysis 
The power analysis being performed is supposed to show the maximum output our linkage mechanism is 
able to provide. This analysis will show the limitations our mechanism experiences due to lack of power 
and the maximum rate of our armature when supplied with 10V and transmitted through our gearing ratio. 
The table below shows the relevant values that were used to calculate the maximum torque required, the 
total moment of inertia of the system, and other operating values of the mechanism and the motor.  

 



Table 14.1: Variables/Equations for Power Analysis  

Variable Value Equation 

IM (Motor Inertia) 25,000 gcm2  

IL (Linkage Inertia) 57670.38 gcm2  

IT (Total inertia) 39417.595 gcm2  IMotor + ( ILoad / N2 ) 

N (Gear ratio) 2 From Transmission selection 

Tmax 
0.09676 Nm Tmax =  IT 𝜶required ×  

⍵max 
315 deg/s From ADAMS 

𝜶required 
1406.41 deg/s2 From ADAMS 

Tmotion 
0.45 s From ADAMS 

VS 
1.498 V  T )/(K )  V s = ( R * R t  

 
Total inertia of the system is calculated by adding the load inertia plus the reflected inertia of the motor. 
This is shown in Equation 14.1 below: 
 

ITotal = IMotor + ILoad / N2 

 
ITotal = (25000)  +  (57670.38) / (2)2 

 
ITotal = 39417.595 gcm2 

Eq. 14.1 

 

After computing the total inertia, we assume a triangular velocity profile to compute the maximum speed 
⍵ max and the required acceleration 𝜶 required to move the mechanism.  These values are computed in 
ADAMS.  Using the total inertia from Equation 14.1 and this 𝜶required, we can find the required 
torque Tmax in Equation 14.2 below: 
 

Tmax =  IT 𝜶required ×  

 
Tmax =  39417.595 gcm2 1406.41 (2𝛑 /360) rad/s2 ×  ×  

 

Tmax = 0.09676 Nm 

Eq. 14.2 

 



Our transmission ratio of 2, the maximum speed ⍵max, and the maximum torque Tmax define the 
most demanding operating point for the motor.  The supply voltage needed to operate the motor 
at this point is given by Equation 14.3 below: 
 

 T )/(K )  V s = ( R * R t  
 

= 1.498 VV s  

Eq. 14.3 

Therefore, the Tmotion
 of 0.45 seconds is achievable with the given limitations and a safety factor 

of 6.67.  The max speed we can achieve with the limitations of our motor is .068 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 



Section 15: Torque Transfer Analysis 
 

 

Figure 15.1: Cross Section of Torque Transfer to Pulley System 

 
The torque is being transferred from the motor to the input timing belt pulley through a set screw (Figure 
15.1), from the input pulley to the output pulley through the timing belt, and from the output pulley to the 
input lever of the mechanism through a spring pin (Figure 15.2). 
  

 



 

Figure 15.2: Cross Section of Torque Transfer to Input Link 

 
The following Free Body Diagrams describes how the force from the DC motor is transferred to the Input 
Link. Below in figure 15.3 the Motor provides a Torque (Tm) which spins the mechanism. The Set screw 
inside of the Pulley is pressed down with force F providing a frictional force (Ff) that conjoins the Motor 
shaft and the Pulley. This frictional force is what limits how much normal force (Fp) can be placed on the 
pulley, and as a result, the amount moment/torque (Mp) that can be put into the system.  

 

Figure 15.3: Free Body Diagram of Torque Transfer from Motor to Pulley 

 

 



The moment in the pulley (Mp green) is then transferred into the attached belt. This Belt runs to another 
pulley and transmits the torque by using teeth and frictional force (Fp). As a result another Moment in the 
second pulley is transmitted (Mp red)  
 

 

Figure 15.4: Free Body Diagram of Torque Transfer from Belt to Pulley 

The moment in the second pulley is then transmitted into the Input link using a spring pin. The moment 
from the pulley (Mp) causes a force on the spring pin (Fp) which is directly transferred into the link by 
Newton's third law. Fp now causes a moment on the Input Link creating the final rotational motion (Mlink).  
 

 

Figure 15.4: Free Body Diagram of Torque Transfer From Pulley to Input Link 

 

 



Torque transfer analysis is being performed in order to verify if the current design can withstand 
the forces input into the system. It also provides understanding of where forcing are coming from and 
where they are being applied. 

In order to calculate the torque transmitted, , to the input lever of the mechanism, we first hadT i  
to calculate the theoretical torque that would be applied without any energy loss, T. This was done by 
multiplying the max output torque of the Pololu 2823 gearbox motor of 0.268 Nm, from the ADAMS 
simulation shown in Figure 6.4, by the gear reduction ratio, GR, of the timing belt as shown in Eq. #1 in 
Table 15.1. This gave us a torque of 0.536 Nm without any energy loss. We then took into account the 
efficiency, e, of the motor and the that would both result in losses in the torque transmitted to the input 
lever.  

In order to find the efficiency of the motor we first had to find the operating and no load speed. 
The no load speed was found by creating  a torque speed curve for the Pololu motor at 6V from the data 
sheet provided on the manufacturer's website. The stall torque, 0.338Nm, and no load speed, 175 RPM, at 
6V were then multiplied by a factor of 1.5 in order to create a torque speed curve at 9V. The transmission 
ratio of 2:1 was then applied to the torque speed curve by multiplying the stall torque by a factor 2 and 
dividing the no load speed by a factor of 2 as shown in Eq. #2 & #3 in Table 15.1. Next we used Eq. #4 
in Table 15.1 to calculate the torque speed gradient, K, and Eq. #5 in Table 15.1 to calculate the 
operating speed,  at 0.536 Nm. This operating speed of 70.8637 RPM was then used in Eq. #6 in,ω  
Table 15.1 to calculate the efficiency of the motor, which came out to 54%. This efficiency was then 
applied to the conservative torque output of the motor to find the torque transmitted to the input lever, 
assuming 100% efficiency of the timing belt itself.  

After applying the efficiency to the conservative torque, Eq. #7 in Table 15.1, we get a torque of 
0.28944 Nm, , transmitted to the input link. The radial distance of the spring pin that transfers thisT i  
torque from the pulley to the input lever is 0.030734m, r. Using Eq. #8 in Table 15.1 the force 
transmitted to the input lever by this torque, F, is 9.41758N. This force is applied by the spring pin to the 
mechanism across about half of the inner surface area of the 1/16” diameter, 0.25” depth, hole allocated to 
it in the input lever. This surface area, A, is found using Eq. #9 in Table 15.1. The stress on the lever, ,σ  
can then be found using Eq. #10 in Table 15.1. The force also causes a shear stress,  in the spring pin and 
set screw across the area perpendicular to the force, calculated using Eq. #12 in Table 15.1. This shear 
stress is found using Eq. #13 in Table 15.1. 

The last step of the stress analysis is to determine if the mechanism will fail. This failure was 
defined as the aluminum in the input link of the mechanism, the spring pin, or the set screw yielding 
under stress. In order to determine if this was the case, we solved for the safety factor, SF, , and FS 2 FS 3

against yielding using Eq. #11 and #13 in Table 15.1. This safety factor, with an assumed minimum 
yield stress of 240MPa for aluminum, , was found to be 403.5, which shows that it is very unlikely thatσy  
our mechanism will yield. The safety factor, with an assumed minimum yield stress of 10787 MPa for the 
spring pin in shear, , was found to be 440.26 , which shows that it is very unlikely that our spring pinτ y  
will yield. The safety factor, with an assumed minimum yield stress of  250 MPa for the steel set screw in 
shear, , was found to be  52.63, which shows that it is very unlikely that our set screw will yield.τ y  

 



Table 15.1: Variables and Equations for Torque Analysis 

Variable Value  Equation Equation # 

T 0.536Nm T=GR T )( a  1 

@9VT s  1.165Nm = (1.5)(2)( @6V)T s T s  2 

@9Vω0  131.25RPM = (1.5)(0.5)( @6V), ω  T s  0 ω0  3 

K 0.008876 Nm/RPM / K = T s ω0  4 

ω  70.8637RPM -T)/K ω = ( T s  5 

e 54% 00( )  e = 1 ω
ω0

 6 

T i  0.28944Nm = 0.54T i T )(  7 

F 9.41758N /r  F = T  8 

A 1.58346E-5m^2 A= (.0254)^2(1/16)(.5)(.25)π  9 

σ  0.594748 MPa /A  σ = F  10 

SF 403.5 F /σ  S = σy  11 

As  1.98E-6m^2 A= (.0254^2)(1/32)π 2  12 

τ  4.75MPa /A  τ = F  13 

S F 2  440.26 F /τ  S 2 = τ y  14 

S F 3  52.63 F /τ  S 3 = τ y  14 

 

 

 
 
 

 

  

 



Section 16: Safety & Motor Controls Introduction 
Safety features and motor controls play a large part in the operation of the linkage mechanism when 
delivering balls to their respective destinations. Safety features generally prevent the operator or 
mechanism from being damaged under unusual operating conditions. One such feature implemented in 
our design is the set of hardstops at either extreme of the linkage motion. This is to prevent the linkage 
from damaging itself from swinging past its intended path or reaching a “toggle point” where the linkage 
may not be able to return to its intended position. An unintended safety mechanism included in the 
mechanism is the slipping feature the timing belt provides if the motor is overloaded with torque. Rather 
than burning out the motor, the belt will slip past the notches on the pulley and allow the belt to rotate 
more freely. The quality of the controls determines the outcomes of all measured quantities in the 
simulations we have run. Without properly reading in the position of the linkage mechanism, the motion 
of the system becomes unpredictable because the start point is incorrect. This could lead to a discrepancy 
in velocity of the input arm and, in turn, the exit velocity of the marble being sorted. Incorrect readings of 
the ball color are even more detrimental because they will be sorted into the wrong bin if all other system 
readings and calculations are correct. The sensors and electronics we are using to complete this include a 
breadboard, a relay terminal, an Arduino Uno, a Pololu motor with an encoder, a limit switch, a toggle 
switch, and a color sensor. 
 
 

Section 17: Capabilities & Limitations of Sensors 
We are using two sensors: a color sensor in the cup and an encoder on the motor.  The color sensor is an 
Adafruit TCS34472.  It measures the colored light reflected off of the ball and assigns it an integer value 
between 0 and 65535.  The four colors in measures are red, blue, green, and clear light.  Each integer is 
converted to 16-bit binary data and sent to the arduino where the signal is decoded.  A stable input voltage 
and light source is needed to operate this sensor so it contains a voltage regulator and small LED.  The 
values found using this sensor vary during testing based on the orientation and motion of the mechanism. 
In order to combat this, we calibrated the sensor while inside the cup, which is its final location, and glued 
it in place to keep its environment consistent.  This reduces variance, but some error is still present. 
 
The second sensor we are using is the Hall Effect encoder attached to the back of our motor.  It has two 
channels and uses a magnetic field in order to measure the rotation and speed of the motor.  It converts 
angular displacement into digital output which will be read by the arduino.  Since there are two channels 
in this encoder, it can determine which direction the motor is turning by examining which square wave 
signal rises first in both A and B.  An important consideration with the encoder is that it reads revolutions 
of the motor and not revolutions of the output shaft.  Since the gearbox attached to the motor is 30:1 and a 
2:1 transmission is connecting it to the linkage, the link only moves one rotation for every 60 rotations of 
the motor shaft.  This is important in order to get a fine resolution of 0.5 mm needed to position the cup 
accurately.  The encoder is not perfect, which can result in error in locating the mechanism.  During 
testing, we found that the mechanism would be off by several encoder counts at known positions after 
testing.  This is because small errors in the encoder occur which stack up the longer testing continues.  In 
order to combat this, we have the limit switch attached at the left endstop of the mechanism.  Whenever 

 



the linkage returns to this position, it will zero itself thus eliminating any and all error built up by the 
encoder. 
 
 

Sensor 18: Mounting Considerations & Methods 
Color sensor placement was done within the cup that captures and contains the balls. The 3D printed part 
that holds the cup also was designed with the color sensor position in mind. A small slot was printed into 
the side that we slide the sensor in and out of without having to dismantle the cup. Below is a picture of 
the CAD model to further describe the cups features. 
 

 

Figure 18.1: Color Sensor CAD 

 
The design of the curved surface was calculated to allow the ball to be at a close distance to the LED 
sensor. Having closer proximity to the LED sensor provides better reliability in determining the type of 
ball color within the cup. The curved shape of the ball holder also provides stability and ensures the ball 
doesn't bounce around while the sensor is trying to make a reading. 
 
In order to fix the color sensor within the 3D printed part without a permanent fixture, hot glue was used. 
This would allow enough rigidity for mechanism use, but also provide ease of removal should the sensor 
need to be taken out. A picture below shows the color sensor within the 3D part. 

 



 

Figure 18.2: Color Sensor In Assembly 

 
Our chosen method for securing the limit switch was mounting it with double sided tape for the 
preliminary testing. This method provided quick and easy adjustment to our design when trying to find 
the correct placement for the sensor. Being our preliminary method of attachment, this would not be an 
acceptable method in industry and we would require more stable mounting points. After a reasonable 
position is found for the limit switch, we plan to use bolts to mount it to the base board. 
 
 

Section 19:  Encoder Counts, Color Sensor Thresholds, and Controller Gains 
Encoder Counts: 
The encoder counts for the chute, wait, and put positions were determined by running our arduino code 
with the 0 encoder count position aligned with the left end stop.  After moving the mechanism by hand 
qualitatively to the desired location, we recorded the encoder count displayed on the serial monitor. These 
encoder counts were used to define the location for each position.  For this process we ensured that there 
wasn’t slip in our mechanisms transmission and that the encoder circuit was correctly assembled   We 
could have used a more theoretical approach, where we calculate the angle of the input link at each 
position and calculate the number of encoder counts by using the number of degrees the linkage turns 

 



with each count.  We decided to not use this approach because we know that there is some error in our 
mechanism and that we cannot start the mechanism in the exact correct position. 
 
Color Sensor Thresholds: 
The color sensor thresholds were determined through the process outlined in lab. The balls were placed in 
the one inch cup, and the red, blue, green, and clear color sensor values were displayed on the serial 
monitor. From these values, a range of values was set for each ball color that was large enough to 
encompass all variations found in experimental testing. Each color has a unique range of values that the 
code uses to determine the ball's color in the cup. 
 
Controller Gains: 
In order to calibrate the gains we first set the parameter “activeChutePosition” to a target position. We 
then set the derivative gain "KD" and integral gain “KI” to 0 and gradually increased the proportional 
gain "KP" starting from 0.01, until the system started to overshoot or oscillate rapidly.  This value was 
divided by two and set as our KP. Next we set the proportional and integral gain to 0 and gradually 
increased the "KD" starting from 0.001, until the system started to oscillate. This value was divided by 
two and set as our KD. Next we set the proportional and derivative gains to the previously determined 
values and gradually increased the "KI" starting from 0.001, until the system came to rest at the target 
position and all steady state error was remedied. Lastly we made sure the PID controller worked at every 
position and that there wasn’t any significant overshoot. 
 

Table 19.1: Summary of Variables in Arduino Code 

Variable Name in 
Arduino Sketch File 

Purpose of Variable Device Calculated 
Value 

Actual Value Used 
During Testing 

ChutePosition1 Chute Position #1 Motor 0 0 

ChutePosition2 Chute Position #2 Motor NA  407 

WAIT_POSITION Wait Position Motor NA 200 

PUT_POSITION Put Position Motor NA 722 

Kp Proportional Gain Motor N/A 0 .15 

K i  Integral Gain Motor NA 0.01 

Kd  Derivative Gain Motor NA 0.0085 

 
Blue Color Values 

Value ranges of the 
color sensor to 
determine a blue ball 

Color 
Sensor 

N/A  R: >1000, <2500 
B: >4200, <5200 
G: >2700, <3500  

 



C: >8000 

 
Maize Color Values 

Value ranges of the 
color sensor to 
determine a maize ball 

Color 
Sensor 

N/A  R: >8000, <10000 
B: >4000, <6000 

G: >8000, <10000  
C: >20000 

 
Red Color Values 

Value ranges of the 
color sensor to 
determine a Red ball 

Color 
Sensor 

N/A  R: >2000, <3500 
B: >1600, <2500 
G: >1600, <2500  

C: >5500 

 
White Color Values 

Value ranges of the 
color sensor to 
determine a White ball 

Color 
Sensor 

N/A  R: >10000, 
<20000 

B: >10000, <20000 
G: >10000, <20000  

C: >15000 

BASE_CMB Voltage needed to 
overcome friction at the 
mechanisms balanced 
position 

Motor NA 2V 

FF_VOLTAGE_LOWER
_BOUND 

Voltage needed to 
overcome gravity at the 
chute 1 position (first 
hardstop) 

Motor 1.859 V  4.75 

FF_VOLTAGE_UPPER_
BOUND 

Voltage needed to 
overcome gravity at the 
second hardstop 

Motor -0.537 V -5 

 
 
 
 
 
 
 

 

  

 



Section 20: Arduino Code Changes 

Constants and Encoder Count Values 

The first changes made to the code were constant values inputted for voltages and encoder positions. 
These values were found by qualitative testing. Voltages and encoder count values were inputted until a 
satisfactory value was reached. These values can be seen in code lines 63-103. 

Separate Cases for Michigan and Ohio balls 

In line 337- 358 of the code below, we had the code navigate to separate cases for depositing the 
Michigan and Ohio State balls. Instead of there being a generic case for depositing the ball, the color 
sensor feedback determines whether to proceed with case PUT_UMICH or case PUT_BALL. This 
allowed the mechanism to behave differently depending on which goal we wanted to score in. We also 
included an else statement that defaults to the PUT_BALL case, but this else statement will likely never 
be reached because of the nature of the Color Sensor code defaulting to MAIZE. We added the code as a 
safety precaution should the color sensor fail and return an error when called. 
 

 

Figure 20.1: Code for Michigan and Ohio Balls 

Case and Position Specific PID Values  

After creating separate cases for Ohio and Michigan balls, chute specific throws were desired. These 
cases would provide a tailored speed to ensure the ball is deposited into the correct basket based off of 
which chute they were dropped from and their color.  
 

 



 

Figure 20.2: Chute Specific PID Values 

As seen in code lines 408-440 , the PID values are tailored to a specific value that was found qualitatively. 
Balls were thrown using different values until an optimal throw was achieved. In the Ohio color ball case 
from Chute 1, we discovered that moving to chute 2 before throwing was the most accurate option. Code 
lines 367-389 describe this situation. The loop will first evaluate the Chute 1 position case as true, move 
to the second case, then continue to throw. 

Recalibration after every throw 

Because of the belt drive there was small drift that would occur after smashing into the endstop. To 
alleviate this issue, a piece of code was written that would automatically calibrate the mechanism after 
depositing every ball. 
 
 

 



 

Figure 20.3: Re-Calibration Code 

This piece of code appears at the end of each ball placement state. Because calibrating from the rightmost 
endstop caused too violent of a smash into the left end stop, the motor first ensures it reaches the wait 
position calmly, then proceeds to move into calibration state. The lines of code 391-405 execute this 
operation.  

Reliable Color Evaluation 

Color sensor code was first changed by reading values from the color sensor and creating bounds for 
specific color cases. This would allow the code to decide what color the ball was based on the number 
values of RGB and Clear. Lines 595-610 complete this. 
 
Instead of evaluating the color once, the code was written in lines 612-669 so that the color of the ball is 
repeatedly assessed until the color reading is consistent twice in a row or the code times out. This was 
done by making an additional variable, ballType2, and only returning the ballType if both variables agree 
or the counter reaches 15. If the counter value is reached, the is ballType defaulted to MAIZE, sending the 
ball into the PUT_UMICH state after running through the Michigan/Ohio cases explained above. This 
allows for more precise assessments of the color and filters any incorrect readings that may have 
occurred. If the ball was not caught or couldn't be read, the counter system ensures that the mechanism 
will still throw after enough time has passed. The picture below also displays this code. 
 

 



 

Figure 20.4: Color Comparison and Counter Timeout 

Wait Time Reduction 

Wait times were reduced in operations such as color sensing and also in the constant that appears in line 
77. Reducing this number simply made the mechanism move quicker, thereby increasing our possible 
score.  

Debugging 

On several occasions, debugging was required after the mechanism wouldn’t behave correctly. Several 
parts of the code thus have serial outputs that provide us information if that specific case is reached. An 
example of this code is lines 638-646 where the raw data sensor values are outputted as the code tries to 
evaluate them continuously. These values are outputted to serial monitor when the color sensor couldn't 
successfully determine a final ball color. From a testing standpoint, this helped us calibrate the color 
sensor values to ensure higher accuracy.  
 
 

Section 21: Final Testing Results/Discussion 
Testing setup was done according to the rules of the competition; we bolted our mechanism to the board 
and set up our wired connections in the five minute initial setup time. Our wiring diagram was used as a 
reference to ensure that the mechanism was connected to the power supply, breadboard, and the playing 
field. The wiring diagram and Arduino code can be seen in Appendix D.  The results of our testing can be 
seen in Table 21.1 below. 
 
 
 

 



Table 21.1: Testing data 

Trial Catching Put in Basket Put in Net Cali- 
bration 

Physical 
Contact 

Score 

1st 
Ball 
Left 

1st 
Ball 
Right 

An
y 
Ball 

First 
Ball 

Correct Incorrect First 
Ball 

Correct Incorrect 

1 1 1 0 0 0 0 0 0 0 1 2 75 

2 1 1 8 1 4 2 1 3 1 1 1 495 

3 1 1 23 1 12 1 1 12 0 1 10 690 

 
 
Testing of our mechanism did not go nearly as well as our team expected. After extensive work on the 
mechanism and the Arduino code that controlled the automated function of the device, our team’s 
mechanism was able to catch balls from both chutes, and sort all balls both accurately and quickly. Our 
team took a video of the mechanism the day before final testing, and the link is included here: 

https://www.youtube.com/watch?v=l0G-hX9gch0 
Following this video, the mechanism was further tuned, and the waiting time time for balls was reduced 
by a factor of three, and the mechanism again completed a perfect run. 
 
During the final testing of our mechanism, our team experienced problems with encoder counts and wire 
connections that resulted in our team receiving a final score that was much lower than our expectations. 
During setup of our mechanism, our team did not properly attach the fuse to the wire from our power 
supply, and it resulted in a faulty connection. As a result of this faulty connection, the motor did not have 
any power for the first test, and the mechanism did not move at all for the first test. The connection was 
fixed during the two minute adjustment period between test. For the second test, our mechanism was 
unable to catch some of the balls from chute one, and was unable to catch any balls from chute 2. This 
was due to the left hardstop being slightly out of place. This caused our motor encoder counts to be 
slightly inaccurate, which led to our chute positions being slightly after the device calibrated, which 
caused the mechanism to miss properly catching balls. During the adjustment period after the second test, 
our team adjusted the left hardstop, and ran out of time while we were trying to calibrate the device to 
find the proper encoder count for the second chute. As a result, our mechanism was unable to catch balls 
from the right chute, and our team missed out on a significant number of points. To say the least, our team 
was very disappointed in our performance during final testing. 

 

  

 

https://www.youtube.com/watch?v=l0G-hX9gch0


Section 22: Design Critique & Evaluation 
1. What worked well? What didn’t work well? Most importantly, explain why. 

The overall design we chose worked as planned for the most part. The board was easily mountable, and 
the limit switch was readily accessible and adjustable. The timing belt worked well as a cheap 
transmission and packaging option, but was susceptible to slip at high speeds and impact. This was due to 
its small size and lack of surface area.We changed the code to reduce the speed of the linkage when 
running into the endstops which eliminated our issues with slippage. The code used in the arduino was 
well developed during testing and during the evaluation. Unfortunately the encoder count system used in 
the arduino was not nearly as precise as anticipated. This led to the mechanism misreading the position of 
the second chute and missing many of the balls that were dropped during the evaluation period. However, 
upon initial testing, the mechanism sorted all of the balls correctly in 1 minute 20 seconds. The PID 
controls were coded properly and were able to capture a ball, read in the color and then decide to throw or 
place the ball into its respective container. As a whole, the mechanism did what we wanted it to do, but 
the position was askew during the evaluation trials.  
 

2. What was your scoring strategy? Did it work as planned? If not, what would you improve for 
better results?  

The scoring strategy chosen was to wait between chutes and create four different commands depending on 
ball color that would either throw the ball or place it in the bucket and then to recalibrate after each 
deposit. Though this strategy is not as time efficient due to the recalibration time, it creates a foolproof 
reset for every ball deposit that ensures a repeatable cup position and motion even if the belt slips. A one 
inch cup was also used to create an opportunity for maximum points. Although during testing the cup 
worked as planned, during final evaluation the one inch cup became a burden. Its small size required the 
encoder count to be very accurate, which caused us to miss many balls in the right chute. Using a two 
inch cup would have solved this issue by creating a larger room for error. 
 

3. How well did your design perform relative to your models?  Explain what you think the 
difference was. 

As compared to the model of our design, the actual design used a bit more voltage to operate and execute 
the throwing command and overcome friction. The difference was likely due to human errors in 
manufacturing, the additional weight of the balls and other materials such as screws, washers, bearings, 
etc., and friction. The Initial drawings of the 4 bar linkage were surprisingly accurate. The mechanism 
followed the circular path very well and its endstop positions were as expected. 
 

4. How did friction influence your built device? 
Friction was not a major influence on our device.  Since we used ball bearings in the links and needle 
roller bearings on the surface, the links rotated easily and friction in the mechanism was not a major issue. 
The voltage required to drive the mechanism was only slightly larger than the calculated voltage. 
 

5. How could the control algorithm (Arduino code) be improved to make better use of the available 
equipment? For example, could the position be more precisely controlled? Could you make use of 
a feed-forward signal? How? 

 



If there were additional color sensors on the playing field we could use feedforward control for 
determining the balls in the chutes before they are dropped and catching multiple balls if desirable. In this 
code you could also have different PID controller gains depending on the number of balls you are trying 
to score.  For more precise control, the arduino code could also be improved to provide a smaller target 
band. 
 

6. Would there be a better way to use the sensors that were provided, or to use different sensors, to 
accomplish the same objectives? 

A sensor that would have been helpful would have been an light and laser sensor to detect exactly where 
the 2nd marble chute is.  The encoder did a very good job at getting the mechanism to the proper chute 
when calibrated correctly.  The issue is that every board is slightly different which throws off the 
calibration.  Having a sensor that would detect the location of the 2nd chute during initial calibration 
would help alleviate this issue and allow our mechanism to be used across a variety of boards without 
having to worry about manual calibration. 
 

7. What other lessons or unique observations did you make about your device and the process that 
you follow to develop it?  Having completed it, would you do anything different – what and why? 

We learned how essential wearing a belt in is to a timing belt drive. After tensioning our transmission the 
belt would slowly stretch and eventually require additional tensioning. This could could drift the encoder 
counts if slip were to occur. We also learned that a violent proportional gain could cause the coupler to 
dip from whiplash and actually shorten the trajectory rather than lengthening it. In a belt drive, we also 
learned that violent shocks can cause slip, and that surface area is very important to transmit torque. If we 
could have done anything different, using a larger belt or a gear drive would have been ideal to reduce the 
amount of slip in the system. 
 

8. On a scale of 1-5, how would you rate the safety of your mechanism? Were the provided sensors 
adequate or would additional sensors and guards be necessary? 

The safety of our mechanism was a 4. The mechanism never posed a safety risk when operated correctly 
and was robustly assembled. Initial sensors or guards were not necessary. Limiting the input voltage to 
10V and having the hard stops in place adequately contained our mechanism.  The only safety issues that 
could occur are when a user reaches into the mechanism while it’s running.  There are no barriers to 
prevent someone from putting their finger in the mechanism while it is moving and it could cause minor 
injuries. 
 

9. Would you recommend that we give your device to someone else right now to use and operate? 
Why or why not? 

Another person could use and operate our device and we would recommend giving them the mechanism 
with a bit of proper instruction.  The only thing that they need to do before they can operate it is calibrate 
it based on the board.  This is easy, as all that needs to be done is move the left end stop slightly, adjust 
the limit switch, and change one encoder value until the mechanism stops directly underneath the 2nd ball 
chute,  This is a simple process that anyone could complete given the proper amount of time. 
 

 



10. What other parts and materials would have been useful to have in your design, if you had been 
given them? 

We think that motors with a lot of controller feedback and a color sensor imbedded into the chutes would 
be a valuable investment for future semesters. If the torque and speed of the mechanism were to be plotted 
from the feedback of the motor, tuning the mechanism and the PID controller could be done more 
quantitatively and any unusual behavior could be isolated and analyzed. If there were additional color 
sensors on the playing field, and more variability in the size of the cup, we could have an additional 
coding element for catching multiple balls at once and different PID controller gains depending on the 
number of balls you are trying to score. 
  

11. Do you think the current point distribution is fair? How could it be modified for future semesters? 
The current point distribution is fair. The project and course material both account for equal percentages 
and the peer reviews are structured in a way that they can have a significant impact on your grade. 
However, the way in which the final testing of the mechanism was graded we feel was not fair. The 
testing policies from last year remained, even when the demand for playing field time was greatly 
reduced. This caused groups to lose points because of an inability to make minor tuning adjustments to 
the playing environment. Had we received just a few more minutes to properly adjust our mechanism, a 
large difference in points could have been scored, ultimately changing our grade. 
 

12. What would you do for a project next year in ME350? 
We feel that one aspect of this project that was lacking was teamwork between the groups in the section. 
To improve this, we should have a project that focuses on the different groups in the section trying to 
work together to move the balls.  Each group could have a starting area with various challenges they have 
to overcome to move balls from one section, or zone, to another.  Each group would make a robotic 
mechanism player to complete these challenges and move the balls across the zones, possibly over or 
through acrylic walls.  Challenges could include obstacles such as a large hill to move over, a pit full of 
cubes, or a labyrinth of sorts.  At the end of the semester there would be a competition between each 
section where the robotic mechanism players would compete to move the most balls.  Having a 
collaborative project like this would increase each team's motivation to succeed, foster a collaborative 
environment, and create high quality parts for distributed manufacturing. 
 
 
The goal of this project was to design, build, and test a powered mechanism that will automatically catch 
falling balls in a cup and deposit them into a basket.  Its purpose was to reinforce the material learned in 
lecture and provide a realistic experience in manufacturing and model based system design. By creating 
our mechanism that successfully caught and moved the balls, we met the goals and fulfilled the purpose 
of this project.  We used the lectures on 4-bar linkages to design the mechanism, the lessons on 
transmission to choose the ideal type for our mechanism, lessons in proper manufacturing plans to receive 
accurate parts, the ADAMS tutorials to determine the power usage, the motor lecture to determine the 
torque and speed output of our motor, and the controls lessons to make our code.  By applying the 
knowledge we acquired in the classroom, we became more proficient with model based and system 
design and will be ready to apply this knowledge in future classes or real world scenarios.  

 



Appendix A:  Individual Sketch Blocks Design, 3D Solidworks, and ADAMS 
Analysis 

Austin Broda: 

My linkage mechanism was designed using the method that was learned in section. First, a basic coupler 
sketch was made in SolidWorks. Next, a simple 2-D sketch of the arena was made using measurements 
taken from the playing board in the X50 Assembly room. The coupler sketch block was then placed 
copied and  placed in the three key positions on the board, under the two tubes, and over the basket. Using 
the three point circle sketch, the ground pivots and link lengths were found from the three point circle 
sketch. These lengths and angles were then used to construct the 3-D SolidWorks model from the 2-D 
sketch.  
 
Following construction of both the playing board and the linkage mechanism in SolidWorks, Adams 
modeling program was used to do preliminary testing of the mechanism. The SolidWorks model was 
imported into Adams, joints were created, and a varying acceleration was added to the input link to 
simulate the torque of the motor. From this simulation, the built in Adams postprocessor recorded the 
angular displacement, angular velocity, torque, and power consumption. These values are shown in the 
following figures. Comparing these values, the best model among the members of our was chosen to be 
the rough draft for the final group model. 
 
 

Table A.1: Austin’s Mechanical Synthesis Values 

Link Lengths(Input, Coupler, Follower) 12.53” 1.61” 9.42” 

Transmission Angles(Position 1, 2, 3) 98.78° 90.00° 131.98° 

Transmission Angle Deviation(Position 1,2, 3) 8.78° 0° 41.98° 

 
 

 



 

Figure A.1: Position 1 of Synthesis w/ Link Lengths and Transmission Angle 

 
 

 



 

Figure A.2: Position 2 of Synthesis w/ Transmission Angle 

 

 



 

Figure A.3: Position 3 of Synthesis w/ Transmission Angle 

 
 
 

 
 
 

 

 



 

Figure A.4: Initial and End Position of 3D Solidworks and Isometric View 

 

 

Figure A.5: Isometric View of ADAMS Model 

 

 



 

Figure A.6: Angular Displacement of ADAMS Simulation 

 

 

Figure A.7: Angular Velocity of ADAMS Simulation 

 

 



 

Figure A.8: Power Consumption of ADAMS Simulation 

 

 

Figure A.9: Input Torque of ADAMS Simulation 

 

 
 

 



Marcos Cavallin: 

Using Solidworks and the rough dimensions of the playing field, I was able to create a sketch of the 
mechanism design. Using this sketch, I was able to easily tweak radii of the two circular paths and 
coupler length/angle to determine an optimal location for the cup in all 3 positions.  This was done while 
also ensuring the transmission angle would not exceed its limits. I believed that the cup positioning was 
important when catching the ball, thus I made a point in my sketch to ensure that the cup at positions 1 
and 2 were as parallel as possible to the chutes above (Figure A.3). Because this was a 2D sketch, making 
changes to important values such as the link length and ground position was also quick and easy. This 
resulted in a bare bones design that could be used later in 3D modeling. 
 
Once satisfied with an initial sketch, the values could then be used to design a full 3D solidworks model. 
This model could show the behavior of the design through its full range of motion. It also provided a 
more realistic perspective on how the design would catch and deposit balls into the bucket. Most 
importantly, this model could then be used in ADAMS to provide a rough simulation of the mechanism. 
This provided important data such as power consumption and angular velocity. After seeing these results, 
I realized the mechanism needed to be more lightweight in order to satisfy the energy requirements. The 
coupler was changed to a more lightweight material, and creating a more sleek design was under 
consideration for future use in the final design. 

Table A.1: Marcos’ Mechanical Synthesis Values 

Link Lengths (Input, Coupler, Follower) 8.22 in 1.04 in 11.03 in 

Transmission Angle (Position 1, 2, 3) 101.44° 42.80° 101.13° 

Deviation (Position 1, 2, 3) 11.44° -47.2° 11.3° 

 



 

 

Figure A.1: Position 1 of Synthesis w/ Link lengths and Transmission Angle 

 

 

Figure A.2: Position 2 of Synthesis w/ Transmission Angle 

 

 



 
 

Figure A.3: Position 3 of Synthesis w/ Transmission Angle 

 

 

 

Figure A.4: Initial and End Positions of 3D Solidworks Model and Isometric View 

 

 



 

Figure A.5: Isometric View of ADAMS model 

 

 

Figure A.6: ADAMS Simulation Graphs (Angular Displacement, Angular Velocity, Power, and 
Input Torque) 

 

 



Mitchell Williams:  

The focus of Lab 1 was centered around our individual mechanism synthesis using the graphical method 
of creating four-bar linkages. Once the playing field was represented in a two dimensional model, the 
objective was to create a coupler that aligned well with the chutes that would drop the multicolor balls in 
the competition. To do this, a two dimensional figure of the 1-inch cup was aligned with the chutes and a 
perimeter circle was drawn between all A linkage points and a separate circle was drawn between all B 
linkage points. Radii were then extended from the circles to the joints and represented the ground pivots 
of the mechanism. This simple but effective design could then be made into three-dimensional linkages 
with aluminum material properties. Once the three dimensional entities were finished, ADAMS 
simulations were run to ensure the torque required to accelerate the mechanism was sufficient and that the 
power usage at a given time was within boundaries. 
 
The two dimensional Solidworks portion made the graphical method extremely simple without having to 
use a compass and ruler. Furthermore, it facilitated the structure behind the three-dimensional model that 
was used in Solidworks. Overall, the design was much more easily made using the applications available. 
The most useful of the programs was probably ADAMS. This took care of maximum torque and power 
calculations without needing to build and test the model or use a series of complicated equations to 
approximate the motion of the four-bar linkage system.  

Table A.1: Mitchell’s Mechanical Synthesis Values 

Link Lengths(Input, Coupler, Follower) 8.68” .74” 9.42” 

Transmission Angles(Position 1, 2, 3) 87.83° 105.86° 47.61° 

Transmission Angle Deviation(Position 1,2, 3) 2.17° 15.86° 42.39° 

 

 



 

Figure A.1: All 3 Cup Positions w/ Transmission Angle and Link Lengths 

 
 
 
 
 
 
 

 



 

 

Figure A.2: Initial and End Positions of 3D Solidworks Model and Isometric View

 

Figure A.3: Isometric View of ADAMS 

 

 



 

Figure A.4: Angular Displacement of ADAMS Simulation 

 
 
 
 
 
 

 

Figure A.5: Angular Velocity of ADAMS Simulation 

 

 



 

Figure A.6: Power Consumption of ADAMS Simulation 

 
 
 
 
 
 

 

Figure A.7: Input Torque of ADAMS Simulation 

 

 



David Van Dyke 

The purpose of mechanism synthesis was to create a mechanism that could move between three positions 
while having mounting points that were in a reasonable location on the board.  A field based on the actual 
field was created in a SolidWorks sketch and a sketch block was created to represent the cup.  This 
allowed us to estimate ideal locations for the cup to be to catch and move the marbles.  We could also use 
the transmission angles to estimate the efficiency of our system, as a lower transmission angle deviation 
will result in a more powerful system.  I used the lengths of each link as well as initial positions in order 
to create a more sophisticated SolidWorks model.  This allowed us to better visualize the mechanism in 
the playing field.  We also used this model to create an ADAMS simulation to estimate power usage. 
 
We exported the model we made in SolidWorks into ADAMS so we could estimate the power it would 
take to run our mechanism in a set amount of time.  This is important since we need to ensure that our 
mechanism will be able to meet the minimum requirements and move.  We do not want to choose a 
linkage design that requires a power level we cannot provide.  We also used the power requirements of 
each design to help us finalize our design and find the best option.  In order to find power, we put motion 
on the input link and ran the mechanism such that it moved over its complete range of motion in 1 second. 
We recorded angular displacement, velocity, power output., and input torque of the mechanism. 

 

Table A.1: David’s Mechanical Synthesis Values 

Link Lengths (Input, Coupler, Follower) 12.65 in 1.25 in 9.45 in 

Transmission Angle (Position 1, 2, 3) 65.59° 58.44° 124.27° 

Deviation (Position 1, 2, 3) -24.41° -34.03° 34.27° 

 

 



 

Figure A.1: David’s Mechanical Synthesis model 

 

 



 

Figure A.2: Initial positions of David’s 3D Solidworks Model 

 

 



 

Figure A.3: Final Position of David’s SolidWorks Model 

 

 



 

Figure A.4: Isometric View of David’s Mechanism on the Playing Field 

 

 



 

Figure A.5: David’s Model in ADAMS 

 
 

 



 

Figure A.6: David’s ADAMS Simulation Graphs (Angular Displacement, Angular Velocity, Power, 
and Input Torque) 

 

 

 

 

 

 

 

 

 

 
 
 

 



Nikko Van Crey 

Each individual design should be introduced with a two-paragraph summary of the main ideas from (1) 
mechanism synthesis, i.e. Sketch Blocks (2) Solidworks, and (3) ADAMS. 
 
The lab was structured in a way that allowed the linkage designs to be easily and quickly modified. The 
first step in designing my individual linkage was to use the graphical method of four bar linkage design. 
This method first required the playing field for the competition to be converted to a 2D sketch that would 
simply serve to visually choose favorable cup positions at different points in the linkages motion. Two 
different circles were made by forming arcs with the 3 different locations for each of the coupler pivots. 
The centers of these circles could then serve as the locations for each end of the ground pivot. This 
method allowed us to ensure that these centers were at a reasonable location for mounting and that the 
transmissions angles for the linkage were all within the 30-150 degree allowable range before even 
starting to take the design to the third dimension.  
 
Now that the 2D mechanism synthesis is complete, the links can be given any shape and depth that I want 
as long as the pivots remain the same distance relative to one another as they were in the 2D analysis. All 
of the critical design work was done in the 2D analysis. After completing the 3D design of the mechanism 
and verifying that the assembly in Solidworks still hits the target cup locations across the linkage’s 
motion, the last step was to test feasibility through an ADAMS simulation that would give data for 
angular displacement, velocity, power output, and input torque. This data is critical because we need to 
verify that we can physically move the mechanism with the motors and materials provided in the desired 
amount of time. If the mechanism has an unreasonable power output this would tell us that some pocket, 
lightweighting, or mechanism redesign is necessary.  

 
 

Table A.1: Nikko’s Mechanical Synthesis Values 

Link Lengths (Input, Coupler, Follower) 9.69 in 1.45 in 6.93 in 

Transmission Angle (Position 1, 2, 3) 103.98° 60.88° 109.4° 

Deviation (Position 1, 2, 3) 13.98° 29.12° 19.4° 

 

 



 
Figure A.1: Nikko’s Mechanical Synthesis model 

 



 

Figure A.2: Initial positions of Nikko’s 3D Solidworks Model 

 

 



 

Figure A.3: Final Position of Nikko’s SolidWorks Model 

 

 



 

Figure A.4: Isometric View of Nikko’s Mechanism on the Playing Field 

 

 



 

Figure A.5: Nikko’s Model in ADAMS 

 

 

Figure A.6: Nikko’s ADAMS Simulation Graphs (Angular Displacement, Angular Velocity, Power, 
and Input Torque) 

 

 



Appendix B: Drawings, Manufacturing Plans, Bill of Materials, and Assembly Plan 
for Final Design 

Drawings and Manufacturing Plans: 

Angle Bracket 

 

 



 
 



Long Input 

 

 



 

 



Short Follower 

 

 



 
 
 

 



Lower Coupler  

 

 



 
 



Mounting Plate 

 

 



 

 



Input Ground Link Spacer 

 

 



 

 



Link Stop 

 

 



 

 



Input Stop 

 

 



 
 
 

 



Board Spacer (Bolt) 

 

 



 

 



Bill of Materials 

 

Part 
Number Part Name Material Dimension(s) Supplier Quantity 

Price 
(per 
item) Notes 

1 
Upper 
Coupler Plastic   1 ---- 3D Print 

2 
Lower 
Coupler Aluminum 1/4" Kit 1 ----  

3 Long Input Aluminum 
10.71" x .65" x 
1/4" Kit 1 ----  

4 
Short 
Follower Aluminum 

8.68" x .65" x 
1/4" Kit 1 ----  

5 
Color 
Sensor N/A 

15.25mm x 
2.16mm Kit 1 ----  

6 
Sleeve 
Bearing 

Oil 
Impregnated 
Brass 

ID .25" OD 
.313" x .25" Kit 4 ----  

7 Washer 

Oil 
Impregnated 
Brass 

ID .26" OD 
.625" x .063" Kit 9 ----  

8 Cup Polycarbonate 
ID 1" x 3" Long 
x 1/8" Thick Kit 1 ----  

9 
Metal 
Gearmotor Steel 37Dx52L mm Kit 1 ----  

10 

Needle 
Thrust 
Bearing Steel 

.250" Bore x 

.687" OD x 

.078" Height Kit 4 ----  

11 
Motor 
Bracket Steel 37D mm Kit 1 ----  

12 
Mounting 
Plate Aluminum 

.25” Thick x 
8.25” Long  x 
7.62” Height Kit 1 ----  

13 
Ball 
Bearing Steel 

ID 1/4" OD 5/8" 
x .196" Height 

McMaster-
Carr 4 $6.56  

Omitted 
Gear 

Choice        

Omitted 
Gear        

 



Choice 

17 
Board 
Spacer Aluminum 

ID .40" OD 
1.00" x 2.11" 
Height 

Kit / 
Purchase 3  

Need to 
purchase 
stock 

19 Link Stop Aluminum 

ID 1/4-20 UNC 
OD 1.00" x .5" 
Height 

Kit / 
Purchase 1  

Need to 
purchase 
stock 

20 Input Stop Aluminum 

ID 1/4-20 UNC 
OD 1.00" x 
1.25" Height 

Kit / 
Purchase 1  

Need to 
purchase 
stock 

21 

Input 
Ground 
Link Spacer Aluminum 

ID .25" OD 
1.00" x .84" 
Height 

Kit / 
Purchase 1  

Need to 
purchase 
stock 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Assembly Manual 

 

 



1) Glue the 1 inch cup into the 3D printed coupler 

 

Figure B.1: Cup and Coupler Exploded Assembly 

2) Press fit the two bearings into the aluminum half of the coupler 

 

Figure B.2: Aluminum Coupler + Bearings Exploded Assembly 

 
3) Attach the coupler parts using two 1-4/20 bolts and locknuts 

 



 

Figure B.3: Full Coupler Exploded Assembly 

4) Connect the input link to the coupler.  A ⅜ inch long shoulder screw with a oil infused thrust washer 
goes through bearing in the coupler.  It goes through the bearing that is angled further down and further 
away from the cup.  It goes through a needle bearing and is screwed into the input link. 
 

 

Figure B.4: Coupler to Follower Exploded Assembly 

 
 
5) Press Fit the 1/16th Spring Pin into the Pulley and also the Input Link 

 



 

 

Figure B.5: Spring Pin Assembly 

 
6)  Attach the follower link to the coupler.  The mounting system is exactly the same as the input, except 
the link is mounted on the opposite side of the coupler 
 

 

Figure B.6: Coupler to Input Exploded Assembly 

 

 



7) Mount the Input link to the base board.  Put a 2 ½” long shoulder screw through a oil embedded thrust 
washer, the bearing in the follower, a needle bearing, the follower ground spacer, and the pulley and 
screw it into the base board. 
 

 

Figure B.7: Input to Base Plate Assembly 

 
8)  Attach the follower link to the board.  Put a ½” long shoulder screw through a oil embedded thrust 
washer, bearing in the link, and a needle bearing between two more washers and screw it into the board. 
 

 

Figure B.8: Follower to Base Plate Assembly 

 
 

 

 



9) Connect the link stops to the board with ½” long ¼-20 screws.  The short one goes in the right slot and 
the longer one goes in the left slot.  Exact placement in the slot is not important. 
 

 

Figure B.9: Hard Stops Assembly to Baseplate 

 
10) Attach the board to the field. Use 3 ⅜-16 bolts with 3  ⅜ washers and the 3 spacers to bolt the 
baseplate to the playing field. The upper left bolt screws into the upper leftmost hole in the playing field.  
 

 

Figure B.10: Spacer + Baseplate Assembly 

 
 
 

 



11) Assembly is complete 
 

 

Figure B.11: Full Mechanism Assembly 

 

 

 

 
 

 



Appendix C: Approval Packages, Bill of Materials, and Assembly Plan for 
Transmission Design 
 
Approval Packages: 
 
Long Input 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Mounting Plate  

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Angle Bracket 

 

 



 

 
 
 

 



Output Pulley 

 

 



 

 



 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Bill of Materials: 

 

Part 
Number Part Name Material Dimension(s) Supplier Quantity 

Price 
(per 
item) Notes 

22 Spring Pin Steel 1/16” 
Assembly 
Room 1 ----  

23 
Angle 
Bracket Aluminum 

.25” x 2.50” x 
2.00” Kit 1 ----  

24 Timing Belt Urethane 

.080” Pitch  
¼” Width  
5.2” OD 

McMaster-
Carr 1 2.55 1679K69 

25 Input Pulley Aluminum 

0.685" OD 
0.080" Pitch 
0.208" W 

McMaster-
Carr 1 11.02 1375K42 

26 
Output 
Pulley Output Pulley 

1.21" OD 
0.080" Pitch 
0.276" W 

McMaster-
Carr 1 14.24 1375K55 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Assembly Manual: 

 
1) Connect the gearbox to the bracket using size 8mm long M3 screws 

 

Figure C.1: DC Motor Assembly 

2) Place the 20 tooth Pulley onto the Motor Shaft and screw in Set Screw to conjoin the two. 

 

 



Figure C.2: 20 Tooth Pulley Assembly 

3) Be sure to assemble the pulley on the input linkage. As pictured in Figure C.3, the transmission is 
assembled using an aluminum mount, an oil impregnated washer, a needle thrust bearing, another oil 
impregnated washer, a press fit ball bearing, a spring pin, the 40 tooth pulley, and a shoulder screw. See 
section B for assembly. 
 

 

Figure C.3: 40 Tooth Input Pulley Assembly 

 
4)  Connect the gearbox bracket to the angled aluminum piece using 3 8mm M3 screws. Connect the 
Angled Bracket to the baseplate using 4 ¼-20 1” Bolts, 8 Washers (4 in the front of the plate and 4 in the 
back),, and 4 ¼-20 Locknuts placed in the rear of the assembly. Attaching the mechanism further left in 
the baseplate slots is recommended as it will provide ease of assembly when putting the belt on.  
  

 



 

Figure C.4: Gearbox + Bracket Exploded Assembly 

 
 
5) Attach the Belt to the input linkage pulley first, then slide the belt over the motor pulley. Tension the 
belt as needed by shifting the angle bracket further right in the slots on the baseplate and finally tightening 
the 4 bolts that hold the bracket in place. If vertical alignment is off, shim the angle bracket by adding 
washers between the baseplate and the bracket. Refer to figures 12.2 and 12.3 for visual aide.  
 

  

Figure C.5: Belt Assembly 

 

 

  

 



Appendix D: Wiring Diagram, Arduino Code, Calculations, and Bill of Materials 
for Safety & Motor Controls 
 

Wiring Diagram:  

 

 
 

  

Arduino Code: 

 
1. // ME350 Ball Handling 
2. // updated 04/13/2017 
3. // 
4. // Team 52 
5.  
6. ////////////////////////////////////////////// 
7. // DEFINE CONSTANTS AND GLOBAL VARIABLES:   // 
8. ////////////////////////////////////////////// 
9.  
10. //** State Machine: **// 

 



11. // CONSTANTS:  
12. // Definition of states in the state machine 
13. const int CALIBRATE     = 1; 
14. const int WAIT          = 2; 
15. const int MOVE_TO_CHUTE = 3; 
16. const int WAIT_FOR_BALL = 4; 
17. const int PUT_BALL      = 5; 
18. const int PUT_UMICH     = 6; 
19. int  state = CALIBRATE; 
20. // VARIABLES: 
21. // Global variable that keeps track of the state: 
22. // Start the state machine in calibration state: 
23.  
24.  
25. //** Color Sensor: **// 
26. // Include the necessary code headers: 
27. #include "Adafruit_TCS34725.h" 
28. #include <Wire.h> 
29. // CONSTANTS:  
30. // Definition of ball types: 
31. const int MAIZE = 1;  
32. const int BLUE  = 2;  
33. const int RED   = 3;  
34. const int WHITE = 4;  
35. const int NONE  = 5;  
36. int ballColor = 5; 
37. int COUNTERC = 0;         //Counter used in color sensor to time out 
38. //int CalibrateCounter = 0; 
39. // VARIABLES: 
40. // Create a variable that allows us to access the color sensor: 
41. Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS, 

TCS34725_GAIN_4X); 
42. // Return values from the sensor 
43. uint16_t red; 
44. uint16_t green; 
45. uint16_t blue; 
46. uint16_t clear; 
47.  
48. //** Computation of position and velocity: **// 
49. // CONSTANTS:  
50. // Settings for velocity computation: 
51. const int MIN_VEL_COMP_COUNT = 2;     // [encoder counts] Minimal change in motor 

position that must happen between two velocity measurements 

 



52. const long MIN_VEL_COMP_TIME = 10000; // [microseconds] Minimal time that must pass 
between two velocity measurements 

53. // VARIABLES: 
54. volatile int motorPosition = 0; // [encoder counts] Current motor position (Declared 'volatile', 

since it is updated in a function called by interrupts) 
55. volatile int encoderStatus = 0; // [binary] Past and Current A&B values of the encoder  (Declared 

'volatile', since it is updated in a function called by interrupts) 
56. // The rightmost two bits of encoderStatus will store the encoder values from the current iteration 

(A and B). 
57. // The two bits to the left of those will store the encoder values from the previous iteration (A_old 

and B_old). 
58. float motorVelocity        = 0; // [encoder counts / seconds] Current motor velocity  
59. int previousMotorPosition  = 0; // [encoder counts] Motor position the last time a velocity was 

computed  
60. long previousVelCompTime   = 0; // [microseconds] System clock value the last time a velocity 

was computed  
61.  
62. //** High-level behavior of the controller:  **// 
63. // CONSTANTS: 
64. // Target positions: 
65. int CalibrateCount = 0; 
66. const int PRE_CALIBRATE_POSITION = -250;            // [Volt] Motor position used during 

pre-calibration 
67. const int CALIBRATION_VOLTAGE = -6;                 // [Volt] Motor voltage used during the 

calibration process 
68. const int WAIT_POSITION       = +245;               // [encoder counts] Motor position 

corresponding to a wait position near the two chutes 
69. const int CHUTE_1_POSITION    = +0;                 // [encoder counts] Motor position 

corresponding to first chute 
70. const int CHUTE_2_POSITION    = +412;               // [encoder counts] Motor position 

corresponding to second chute 
71. const int PUT_POSITION        = +720;               // [encoder counts] Motor position corresponding 

to basket lane 
72. const int UMICH_POSITION      = +700;               // [encoder counts] Motor position 

corresponding to UMICH balls 
73. const int LOWER_BOUND         = CHUTE_1_POSITION;   // [encoder counts] Position of the 

left end stop 
74. const int UPPER_BOUND         = PUT_POSITION;       // [encoder counts] Position of the right 

end stop 
75. const int TARGET_BAND         = 20;                 // [encoder counts] "Close enough" range when 

moving towards a target. 
76. // Timing: 

 



77. const long  WAIT_TIME         = 250000;             // [microseconds] Time waiting for the ball to 
drop.  

78. // VARIABLES: 
79. int activeChutePosition;             // [encoder counts] position of the currently active chute 
80. unsigned long startWaitTime;         // [microseconds] System clock value at the moment the 

WAIT_FOR_BALL state started 
81.  
82. //** PID Controller  **// 
83. // CONSTANTS: 
84. float KP             = 0.12; // [Volt / encoder counts] P-Gain 
85. float KI             = 0.01; // [Volt / (encoder counts * seconds)] I-Gain 
86. float KD             = 0.005; // [Volt * seconds / encoder counts] D-Gain 
87. const float SUPPLY_VOLTAGE = 10; // [Volt] Supply voltage at the HBridge 
88. const float BASE_CMD       = 2; // [Volt] Voltage needed to overcome friction 
89. // VARIABLES: 
90. int  targetPosition  = 0; // [encoder counts] desired motor position 
91. float positionError  = 0; // [encoder counts] Position error 
92. float integralError  = 0; // [encoder counts * seconds] Integrated position error 
93. float velocityError  = 0; // [encoder counts / seconds] Velocity error 
94. float desiredVoltage = 0; // [Volt] Desired motor voltage 
95. int   motorCommand   = 0; // [0-255] PWM signal sent to the motor 
96. unsigned long executionDuration = 0; // [microseconds] Time between this and the previous loop 

execution.  Variable used for integrals and derivatives 
97. unsigned long lastExecutionTime = 0; // [microseconds] System clock value at the moment the 

loop was started the last time 
98.  
99. //** Gravity Compensation Lookup Table: **// 
100. // CONSTANTS:  
101. const float FF_BALANCED_POSITION   = 200; // [encoder counts] Position at which the 

device is fully balanced.  
102. const float FF_VOLTAGE_LOWER_BOUND = 4.75; // [Volt] Voltage to be applied at the 

left endstop  
103. const float FF_VOLTAGE_UPPER_BOUND = -5; // [Volt] Voltage to be applied at the right 

endstop  
104.  
105. //** Pin assignment: **// 
106. // CONSTANTS: 
107. const int PIN_NR_ENCODER_A        = 2;  // Never change these, since the interrupts are 

attached to pin 2 and 3 
108. const int PIN_NR_ENCODER_B        = 3;  // Never change these, since the interrupts are 

attached to pin 2 and 3 
109. const int PIN_NR_DROP_REQ         = 13; 
110. const int PIN_NR_ON_OFF_SWITCH    = 5; 

 



111. const int PIN_NR_CHUTE_1_READY    = 12; 
112. const int PIN_NR_CHUTE_2_READY    = 11; 
113. const int PIN_NRL_LIMIT_SWITCH    = 8; 
114. const int PIN_NR_PWM_OUTPUT       = 9; 
115. const int PIN_NR_PWM_DIRECTION_1  = 10; 
116. const int PIN_NR_PWM_DIRECTION_2  = 6; 
117. // End of CONSTANTS AND GLOBAL VARIABLES 
118.  
119.  
120. ////////////////////////////////////////////////////////////////////////////////////////// 
121. // The setup() function is called when a sketch starts. Use it to initialize variables, // 
122. // pin modes, start using libraries, etc. The setup function will only run once, after  // 
123. // each powerup or reset of the Arduino board:                                          // 
124. ////////////////////////////////////////////////////////////////////////////////////////// 
125. void setup() { 
126.   // Declare which digital pins are inputs and which are outputs: 
127.   pinMode(PIN_NR_ENCODER_A,        INPUT_PULLUP); 
128.   pinMode(PIN_NR_ENCODER_B,        INPUT_PULLUP); 
129.   pinMode(PIN_NR_CHUTE_1_READY,    INPUT);  
130.   pinMode(PIN_NR_CHUTE_2_READY,    INPUT);  
131.   pinMode(PIN_NR_ON_OFF_SWITCH,    INPUT); 
132.   pinMode(PIN_NRL_LIMIT_SWITCH,    INPUT); 
133.   pinMode(PIN_NR_DROP_REQ,         OUTPUT); 
134.   pinMode(PIN_NR_PWM_OUTPUT,       OUTPUT); 
135.   pinMode(PIN_NR_PWM_DIRECTION_1,  OUTPUT); 
136.   pinMode(PIN_NR_PWM_DIRECTION_2,  OUTPUT); 
137.  
138.   // Turn on the pullup resistors on the encoder channels 
139.   digitalWrite(PIN_NR_ENCODER_A, HIGH);  
140.   digitalWrite(PIN_NR_ENCODER_B, HIGH); 
141.  
142.   // Activate interrupt for encoder pins. 
143.   // If either of the two pins changes, the function 'updateMotorPosition' is called: 
144.   attachInterrupt(0, updateMotorPosition, CHANGE);  // Interrupt 0 is always attached to 

digital pin 2 
145.   attachInterrupt(1, updateMotorPosition, CHANGE);  // Interrupt 1 is always attached to 

digital pin 3 
146.  
147.   // Begin serial communication for monitoring. 
148.   Serial.begin(115200); 
149.   Serial.println("Start Executing Program."); 
150.  
151.   // Begin the operation of the color sensor and check if it works. 

 



152.   if (tcs.begin()) { 
153.     Serial.println("Color sensor found"); 
154.   } else { 
155.     Serial.println("Color sensor not found.  Please check your connections"); 
156.     while (1); // infinite loop to halt the program 
157.   } 
158.   
159.   // Initialize outputs: 
160.   // Set the dropRequestSignal to low: 
161.   digitalWrite(PIN_NR_DROP_REQ, LOW); 
162.   // Set initial output to the motor to 0 
163.   analogWrite(PIN_NR_PWM_OUTPUT, 0); 
164. } 
165. // End of function setup() 
166.  
167.  
168. //////////////////////////////////////////////////////////////////////////////////////////////// 
169. // After going through the setup() function, which initializes and sets the initial values,   // 
170. // the loop() function does precisely what its name suggests, and loops consecutively,        // 
171. // allowing your program to sense and respond. Use it to actively control the Arduino board. 

// 
172. ////////////////////////////////////////////////////////////////////////////////////////////////  
173. void loop() { 
174.   // Determine the duration it took to execute the last loop. This time is used  
175.   // for integration and for monitoring the loop time via the serial monitor. 
176.   executionDuration = micros() - lastExecutionTime; 
177.   lastExecutionTime = micros(); 
178.  
179.   // Speed Computation: 
180.   if ((abs(motorPosition - previousMotorPosition) > MIN_VEL_COMP_COUNT) || (micros() 

- previousVelCompTime) > MIN_VEL_COMP_TIME){ 
181.     // If at least a minimum time interval has elapsed or 
182.     // the motor has travelled through at least a minimum angle ...  
183.     // .. compute a new value for speed: 
184.     // (speed = delta angle [encoder counts] divided by delta time [seconds]) 
185.     motorVelocity = (double)(motorPosition - previousMotorPosition) * 1000000 /  
186.                             (micros() - previousVelCompTime); 
187.     // Remember this encoder count and time for the next iteration: 
188.     previousMotorPosition = motorPosition; 
189.     previousVelCompTime   = micros(); 
190.   } 
191.   if (digitalRead(PIN_NRL_LIMIT_SWITCH)==HIGH && motorVelocity==0) {  
192.         // We reached the endstop.  Update the motor position to the limit: 

 



193.         // (NOTE: If the limit switch is on the right, this must be UPPER_BOUND) 
194.         motorPosition = LOWER_BOUND;  
195.         // Reset the error integrator: 
196.         integralError = 0; 
197.   } 
198.   //Reset to original values after each loop 
199.  
200.       Serial.print(" KP: ");  
201.       Serial.print(KP); 
202.       Serial.print(" KI: ");  
203.       Serial.print(KI); 
204.       Serial.print(" KD: ");  
205.       Serial.print(KD); 
206.  

//*****************************************************************************
*****************************************************// 

207.   // The state machine: 
208.   switch (state) { 
209.  
210.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
211.     // 1****************************************************** CALIBRATE 

***********************************************************1 // 
212.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
213.     // In the CALIBRATE state, we move the mechanism to a position outside of the  
214.     // work space (towards the limit switch).  Once the limit switch is on and  
215.     // the motor stopped turning, we know that we are against the end stop 
216.     case CALIBRATE: 
217.   
218.       // We don't have to do anything here since this state is only used to set 
219.       // a fixed output voltage.  This happens further below. 
220.       KP             = 0.12; // [Volt / encoder counts] P-Gain 
221.       KI             = 0.01; // [Volt / (encoder counts * seconds)] I-Gain 
222.       KD             = 0.009; // [Volt * seconds / encoder counts] D-Gain  
223.       // Decide what to do next: 
224.       if (digitalRead(PIN_NRL_LIMIT_SWITCH)==HIGH && motorVelocity==0) {  
225.         // We reached the endstop.  Update the motor position to the limit: 
226.         // (NOTE: If the limit switch is on the right, this must be UPPER_BOUND) 
227.         motorPosition = LOWER_BOUND;  
228.         // Reset the error integrator: 
229.         integralError = 0; 
230.         // Calibration is finalized. Transition into WAIT state 

 



231.         Serial.println("State transition from CALIBRATE to WAIT"); 
232.         state = WAIT; 
233.       }  
234.   
235.     // Otherwise we continue calibrating 
236.     break; 
237.  
238.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
239.     // 2********************************************************** WAIT 

************************************************************2 // 
240.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
241.     // In the WAIT state, we move the cup to a neutral position (close to the  
242.     // chutes) while we wait for one of them to become active. 
243.     case WAIT: 
244.   
245.       COUNTERC = 0;               //Counter used in color sensor to time out 
246.       KP             = 0.125;     // [Volt / encoder counts] P-Gain 
247.       KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
248.       KD             = 0.003;     // [Volt * seconds / encoder counts] D-Gain  
249.  
250.       // Set the target position to a neutral position near the chutes: 
251.       targetPosition = WAIT_POSITION; 
252.  
253.       // Decide what to do next: 
254.       if (digitalRead(PIN_NR_CHUTE_1_READY) == HIGH) { 
255.         // Chute 1 signaled to be ready to drop a ball.  Set the position of chute 
256.         // 1 as the position of the active chute: 
257.         activeChutePosition = CHUTE_1_POSITION; 
258.         // Transit into MOVE_TO_CHUTE state: 
259.         Serial.println("State transition from WAIT to MOVE_TO_CHUTE. Active chute = 1!"); 
260.         state = MOVE_TO_CHUTE; 
261.       } 
262.       if (digitalRead(PIN_NR_CHUTE_2_READY) == HIGH) {  
263.         // Chute 2 signaled to be ready to drop a ball.  Set the position of chute 
264.         // 2 as the position of the active chute: 
265.         activeChutePosition = CHUTE_2_POSITION; 
266.         // Transit into MOVE_TO_CHUTE state: 
267.         Serial.println("State transition from WAIT to MOVE_TO_CHUTE. Active chute = 2!"); 
268.         state = MOVE_TO_CHUTE; 
269.       } 
270.       // Otherwise we continue waiting 

 



271.   
272.       break; 
273.   
274.  

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
275.     // 3****************************************************** 

MOVE_TO_CHUTE ********************************************************3 // 
276.  

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
277.     // In the MOVE_TO_CHUTE state, we move the cup under one of the two chutes  
278.     // (indicated by the variable active_chute). Once the position was reached  
279.     // (with some error) and the motor stopped turning, we know that we are under 
280.     // the chute. 
281.     case MOVE_TO_CHUTE: 
282.  
283.       KP             = 0.1;       // [Volt / encoder counts] P-Gain 
284.       KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
285.       KD             = 0.005;     // [Volt * seconds / encoder counts] D-Gain 
286.   
287.       // Set the target position to chute 1 or 2: 
288.       targetPosition = activeChutePosition; 
289.  
290.       // Decide what to do next: 
291.       if (motorPosition <= (activeChutePosition + TARGET_BAND) && motorPosition >= 

(activeChutePosition - TARGET_BAND) && motorVelocity == 0) { 
292.         // We reached the chute.  Ask the playing field to drop a ball by  
293.         // setting chuteActivateSignal to HIGH: 
294.         if (digitalRead(PIN_NRL_LIMIT_SWITCH)==HIGH && motorVelocity==0) {  
295.           motorPosition = LOWER_BOUND; 
296.           integralError = 0; 
297.         } 
298.         digitalWrite(PIN_NR_DROP_REQ, HIGH); 
299.         // Start waiting timer: 
300.         startWaitTime = micros(); 
301.         // Transition into WAIT_FOR_BALL state 
302.         Serial.println("State transition from MOVE_TO_CHUTE to WAIT_FOR_BALL"); 
303.         state = WAIT_FOR_BALL; 
304.   
305.       }  
306.       // Otherwise we continue moving towards the chute 
307.   
308.       break; 
309.   

 



310.  
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

311.     // 4****************************************************** 
WAIT_FOR_BALL *******************************************************4 // 

312.  
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

313.     // In this state, we stay at the chute and wait until the ball was dropped: 
314.     case WAIT_FOR_BALL: 
315.   
316.       // The target position remains at either chute 1 or 2: 
317.       targetPosition = activeChutePosition; 
318.  
319.       // Decide what to do next: 
320.       if (micros()-startWaitTime>WAIT_TIME) { 
321.         // We have waited long enough for the ball to drop. By now we should have 
322.         // recieved it.  
323.         // Set the chuteActivateSignal back to LOW. 
324.         digitalWrite(PIN_NR_DROP_REQ, LOW); 
325.   
326.         // call ball color function to give ball color from sensor 
327.         ballColor = evaluateColorSensor(); 
328.   
329.         Serial.print("Ball color is: "); 
330.         switch (ballColor) { 
331.           case MAIZE: Serial.println("MAIZE."); break; 
332.           case BLUE:  Serial.println("BLUE.");  break; 
333.           case RED:   Serial.println("RED.");   break; 
334.           case WHITE: Serial.println("WHITE."); break; 
335.           case NONE:  Serial.println("NONE."); break; 
336.         } 
337.         // Transition into PUT_BALL state 
338.         if(ballColor == MAIZE || ballColor == BLUE) { 
339.         //CalibrateCounter = CalibrateCounter + 1;  
340.           Serial.println("State transition from WAIT_FOR_BALL to PUT_UMICH"); 
341.           state = PUT_UMICH; 
342.           break; 
343.         } 
344.         if(ballColor == RED || ballColor == WHITE) { 
345.         //CalibrateCounter = CalibrateCounter + 1;  
346.           Serial.println("State transition from WAIT_FOR_BALL to PUT_BALL"); 
347.           state = PUT_BALL; 
348.           break; 
349.         } 

 



350.         else { 
351.           Serial.println("State transition from WAIT_FOR_BALL to ELSE");  
352.           state = PUT_BALL; 
353.           break; 
354.         } 
355.       }  
356.       // Otherwise we continue waiting for the ball 
357.   
358.       break; 
359.   
360.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
361.     // 5****************************************************** PUT_BALL 

************************************************************5 // 
362.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
363.     // In this state, we move the cup to launch RED and WHITE balls into the NET 
364.     case PUT_BALL: 
365.   
366.       // ***************************************************** CHUTE 2 

************************************************************** 
367.       if (motorPosition <= (CHUTE_2_POSITION + TARGET_BAND) && motorPosition >= 

(CHUTE_2_POSITION - TARGET_BAND) && motorVelocity == 0) { 
368.         // If the mechanism reached chute 2 and stopped, proceed to throwing ball 
369.         // PID values are assigned to ensure better launch 
370.         KP             = 0.14;      // [Volt / encoder counts] P-Gain 
371.         KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
372.         KD             = 0.004;     // [Volt * seconds / encoder counts] D-Gain 
373.  
374.         Serial.println("PUT_POSITION"); 
375.         targetPosition = PUT_POSITION; 
376.         //Since this is for the WHITE and RED case, we move to the OHIO color encoder 

position 
377.       } 
378.  
379.       // ***************************************************** CHUTE 1 

************************************************************** 
380.       if (motorPosition <= (CHUTE_1_POSITION + TARGET_BAND) && motorPosition >= 

(CHUTE_1_POSITION - TARGET_BAND) && motorVelocity == 0) { 
381.         // If the mechanism reached chute 1 and stopped, proceed to move to chute 2 (this is for 

better accuracy) 
382.         // PID values are assigned to ensure smooth transition to chute 2 position 
383.         KP             = 0.14;      // [Volt / encoder counts] P-Gain 

 



384.         KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
385.         KD             = 0.006;     // [Volt * seconds / encoder counts] D-Gain 
386.   
387.         targetPosition = CHUTE_2_POSITION; 
388.         //To ensure better accuracy throwing OHIO color balls, we move to chute 2 encoder 

position and wait for above loop to be true 
389.       } 
390.  
391.       // Decide what to do next: 
392.       if (motorPosition <= (PUT_POSITION + TARGET_BAND) && motorPosition >= 

(PUT_POSITION - TARGET_BAND) && motorVelocity == 0 ) { 
393.         // We reached the basket and dropped the ball. 
394.         // Transition into WAIT state to restart the cycle 
395.         Serial.println("State transition from PUT_BALL to WAIT"); 
396.         targetPosition = WAIT_POSITION; 
397.       }  
398.       if (motorPosition <= (WAIT_POSITION + TARGET_BAND) && motorPosition >= 

(WAIT_POSITION - TARGET_BAND) && motorVelocity == 0) { 
399.         // After reaching WAIT, we calibrate before picking up another ball 
400.         state = CALIBRATE; 
401.         Serial.println("State transition from PUT_BALL to CALIBRATE"); 
402.         break; 
403.       }  
404.       // Otherwise we continue moving towards the chute 
405.       break; 
406.  
407.  
408.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
409.     // 6****************************************************** PUT_UMICH 

***********************************************************6 // 
410.  

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
411.     // In this state, we move to the correct position for placing MAIZE and BLUE balls into the 

bucket 
412.     case PUT_UMICH: 
413.  
414.       // ***************************************************** CHUTE 2 

************************************************************** 
415.       if(motorPosition <= (CHUTE_2_POSITION + TARGET_BAND) && motorPosition >= 

(CHUTE_2_POSITION - TARGET_BAND) && motorVelocity == 0) 
416.       // If the mechanism reached CHUTE 2 and stopped, proceed to placing ball 
417.       // PID values are assigned to ensure better placement 

 



418.       { 
419.         KP             = 0.11;      // [Volt / encoder counts] P-Gain 
420.         KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
421.         KD             = 0.006;     // [Volt * seconds / encoder counts] D-Gain 
422.   
423.         Serial.println("PUT_UMICH"); 
424.         targetPosition = UMICH_POSITION; 
425.         // Since this is for the BLUE and MAIZE case, we move to the UMICH color encoder 

position 
426.       } 
427.   
428.       // ***************************************************** CHUTE 1 

************************************************************** 
429.       if(motorPosition <= (CHUTE_1_POSITION + TARGET_BAND) && motorPosition >= 

(CHUTE_1_POSITION - TARGET_BAND) && motorVelocity == 0) 
430.         // If the mechanism reached CHUTE 1 and stopped, proceed to placing ball 
431.         // PID values are assigned to ensure better placement 
432.       { 
433.         KP             = 0.125;     // [Volt / encoder counts] P-Gain 
434.         KI             = 0.01;      // [Volt / (encoder counts * seconds)] I-Gain 
435.         KD             = 0.006;     // [Volt * seconds / encoder counts] D-Gain 
436.   
437.         Serial.println("PUT_UMICH"); 
438.         targetPosition = UMICH_POSITION; 
439.         // Since this is for the BLUE and MAIZE case, we move to the UMICH color encoder 

position 
440.       }  
441.  
442.  
443.      // Decide what to do next: 
444.       if (motorPosition <= (UMICH_POSITION + TARGET_BAND) && motorPosition >= 

(UMICH_POSITION - TARGET_BAND) && motorVelocity == 0 ) 
445.       {  
446.         // We reached the basket and dropped the ball. 
447.         // Transition into WAIT state to restart the cycle 
448.         Serial.println("State transition from PUT_BALL to WAIT"); 
449.         targetPosition = WAIT_POSITION; 
450.       }  
451.         if (motorPosition <= (WAIT_POSITION + TARGET_BAND) && motorPosition >= 

(WAIT_POSITION - TARGET_BAND) && motorVelocity == 0)  
452.       { 
453.         // After reaching WAIT, we calibrate before picking up another ball 
454.         state = CALIBRATE; 

 



455.         Serial.println("State transition from PUT_BALL to CALIBRATE"); 
456.         break; 
457.       }  
458.       // Otherwise we continue moving towards the chute 
459.   
460.     break; 
461.  
462.  

//****************************************************************************// 
463.     // We should never reach the next bit of code, which would mean that the state 
464.     // we are currently in doesn't exist.  So if it happens, throw an error and  
465.     // stop the program: 
466.     default:  
467.       Serial.println("Statemachine reached at state that it cannot handle.  ABORT!!!!"); 
468.       Serial.print("Found the following unknown state: "); 
469.       Serial.println(state); 
470.       while (1); // infinite loop to halt the program 
471.     break; 
472.   
473.   } 
474.   // End of the state machine. 
475.  

//*****************************************************************************
******************************************************// 

476.   
477.   
478.  

//*****************************************************************************
******************************************************// 

479.   // Position Controller 
480.   if (digitalRead(PIN_NR_ON_OFF_SWITCH)==HIGH) { 
481.     // If the toggle switch is on, run the controller: 
482.  
483.     //** PID control: **//  
484.     // Compute the position error [encoder counts] 
485.     positionError = targetPosition - motorPosition; 
486.     // Compute the integral of the position error  [encoder counts * seconds] 
487.     integralError = integralError + positionError * (float)(executionDuration) / 1000000;  
488.     // Compute the velocity error (desired velocity is 0) [encoder counts / seconds] 
489.     velocityError = 0 - motorVelocity; 
490.     // This is the actual controller function that uses the error in  
491.     // position and velocity and the integrated error and computes a 
492.     // desired voltage that should be sent to the motor: 

 



493.     desiredVoltage = KP * positionError +  
494.                      KI * integralError + 
495.                      KD * velocityError; 
496.   
497.     //** Feedforward terms: **// 
498.     // Compensate for friction.  That is, if we now the direction of  
499.     // desired motion, add a base command that helps with moving in this 
500.     // direction: 
501.     if (positionError < -5) { 
502.       desiredVoltage = desiredVoltage - BASE_CMD; 
503.     } 
504.     if (positionError > +5) { 
505.       desiredVoltage = desiredVoltage + BASE_CMD; 
506.     } 
507.     // Gravity compensation lookup.  Here we record which voltage we need 
508.     // to keep the device balanced at the left and at the right, and note  
509.     // where it is balanced passively.  The feedforward value is determined 
510.     // by linear interpolation between these three points. 
511.     if (motorPosition<FF_BALANCED_POSITION) { 
512.         desiredVoltage = desiredVoltage + 

(FF_BALANCED_POSITION-motorPosition)/(FF_BALANCED_POSITION-LOWER_BOUN
D)*FF_VOLTAGE_LOWER_BOUND; 

513.     } 
514.     if (motorPosition>FF_BALANCED_POSITION) { 
515.         desiredVoltage = desiredVoltage + 

(motorPosition-FF_BALANCED_POSITION)/(UPPER_BOUND-FF_BALANCED_POSITION
)*FF_VOLTAGE_UPPER_BOUND; 

516.     } 
517.  
518.     // Anti-Wind-Up 
519.     if (abs(desiredVoltage)>SUPPLY_VOLTAGE) { 
520.       // If we are already saturating our output voltage, it does not make 
521.       // sense to keep integrating the error (and thus ask for even higher 
522.       // and higher output voltages).  Instead, stop the integrator if the  
523.       // output saturates. We do this by reversing the summation at the  
524.       // beginning of this function block: 
525.       integralError = integralError - positionError * (float)(executionDuration) / 1000000;  
526.     } 
527.     // End of 'if(onOffSwitch==HIGH)' 
528.   
529.     // Override the computed voltage during calibration.  In this state, we simply apply a  
530.     // fixed voltage to move against one of the end-stops. 
531.     if (state==CALIBRATE) { 

 



532.       desiredVoltage = CALIBRATION_VOLTAGE; // add calibration code here 
533.     } 
534.   } else {  
535.     // Otherwise, the toggle switch is off, so do not run the controller,  
536.     // stop the motor... 
537.     desiredVoltage = 0;  
538.     // .. and reset the integrator of the error: 
539.     integralError = 0; 
540.     // Produce some debugging output: 
541.     Serial.println("The toggle switch is off.  Motor Stopped."); 
542.   }  
543.   // End of  else onOffSwitch==HIGH 
544.   
545.   //** Send signal to motor **// 
546.   // Convert from voltage to PWM cycle: 
547.   motorCommand = int(abs(desiredVoltage * 255 / SUPPLY_VOLTAGE)); 
548.   // Clip values larger than 255 
549.   if (motorCommand > 255) { 
550.     motorCommand = 255; 
551.   } 
552.   // Send motor signals out 
553.   analogWrite(PIN_NR_PWM_OUTPUT, motorCommand); 
554.   // Determine rotation direction 
555.   if (desiredVoltage >= 0) { 
556.     // If voltage is positive ... 
557.     // ... turn forward 
558.     digitalWrite(PIN_NR_PWM_DIRECTION_1,LOW);  // rotate forward 
559.     digitalWrite(PIN_NR_PWM_DIRECTION_2,HIGH); // rotate forward 
560.   } else { 
561.     // ... otherwise turn backward: 
562.     digitalWrite(PIN_NR_PWM_DIRECTION_1,HIGH); // rotate backward 
563.     digitalWrite(PIN_NR_PWM_DIRECTION_2,LOW);  // rotate backward 
564.   } 
565.   // End of Position Controller 
566.   //*********************************************************************// 
567.   
568.   // Print out current controller state to Serial Monitor. 
569.   printStateToSerial(); 
570. } 
571. // End of main loop 
572. //***********************************************************************// 
573.  
574.  

 



575. ////////////////////////////////////////////////////////////////////// 
576. // This is a function that returns the type of ball found in the    // 
577. // cup.  It is called from the loop()-routine.  It returns one of   // 
578. // the following values:                                            // 
579. // 'MAIZE', 'BLUE', 'RED', 'WHITE', 'NONE'.                         // 
580. ////////////////////////////////////////////////////////////////////// 
581.   
582. int evaluateColorSensor() { 
583. // The ball sensor evaluation will read two values, then compare them to make a more 

accurate color assessment 
584. // It will also continue to read until it times out, then will guess the ball as a UMICH color 

and proceed 
585.   
586.   // initialize ball type with 'NONE'.  Override later if a ball color was detected. 
587.   int ballType = NONE; 
588.   
589.   // ********************************************* 1ST COLOR READING 

************************************************* // 
590.   tcs.setInterrupt(false);      // turn on LED 
591.   delay(50);                    // Takes 0.05s to turn on the LED and stablize it 
592.   tcs.getRawData(&red, &green, &blue, &clear); 
593.   tcs.setInterrupt(true);       // turn off LED 
594.  
595.   // Check if the ball is MAIZE 
596.   if ((red>7500) && (red <12000) && (green>7500) && (green <13000)&& (blue>3500) 

&& (blue <7000) && (clear>18000)){ 
597.     ballType = MAIZE; 
598.   } 
599.   // Check if the ball is BLUE 
600.   if ((red>1000) && (red <2500) && (green>2500) && (green < 3800)&& (blue>4200) && 

(blue <6500) && (clear>8000)){ 
601.     ballType = BLUE; 
602.   } 
603.   // Check if the ball is RED 
604.   if ((red>1950) && (red <4200) && (green>1600) && (green <3000)&& (blue>1600) && 

(blue <3000) && (clear>5500)){ 
605.     ballType = RED; 
606.   } 
607.   // Check if the ball is WHITE 
608.   if ((red>8000) && (red <20000) && (green>10000) && (green <20000)&& (blue>10000) 

&& (blue <20000) && (clear>15000) ){ 
609.     ballType = WHITE; 
610.   } 

 



611.  
612.   // ********************************************* 2ND COLOR READING 

*************************************************** // 
613.   tcs.setInterrupt(false);            // turn on LED 
614.   delay(10);                          // Set a small delay between reading the first and second value  
615.   tcs.getRawData(&red, &green, &blue, &clear); 
616.   tcs.setInterrupt(true);             // turn off LED 
617.   int ballType2 = NONE;               // Initialize the second ballType to compare to the first 
618.   
619.   // Check if the ball is MAIZE 
620.   if ((red>7500) && (red <12000) && (green>7500) && (green <13000)&& (blue>3500) 

&& (blue <7000) && (clear>18000)){ 
621.     ballType2 = MAIZE; 
622.   } 
623.   // Check if the ball is BLUE 
624.   if ((red>1000) && (red <2500) && (green>2500) && (green < 3800)&& (blue>4200) && 

(blue <6500) && (clear>8000)){ 
625.     ballType2 = BLUE; 
626.   } 
627.   // Check if the ball is RED 
628.   if ((red>1950) && (red <4200) && (green>1600) && (green <3000)&& (blue>1600) && 

(blue <3000) && (clear>5300)){ 
629.     ballType2 = RED; 
630.   } 
631.   // Check if the ball is WHITE 
632.   if ((red>8000) && (red <20000) && (green>10000) && (green <20000)&& (blue>10000) 

&& (blue <20000) && (clear>15000) ){ 
633.     ballType2 = WHITE; 
634.   
635.   } 
636.  
637.   // If the program struggles to read a value, It will begin to spit out the values it reads onto 

serial monitor 
638.   // This is for debugging purposes to adjust ball color values 
639.   Serial.print(F("Raw R:"));  
640.   Serial.print(red);  
641.   Serial.print(F(" G:"));  
642.   Serial.print(green);  
643.   Serial.print(F(" B:"));  
644.   Serial.print(blue);  
645.   Serial.print(F(" C:"));  
646.   Serial.println(clear);  
647.  

 



648.   // A counter that was initialized earlier, every time the loop reads another color value it adds 
to this value 

649.   COUNTERC = COUNTERC + 1; 
650.   Serial.print(COUNTERC); 
651.  
652.   // ***************************************** COLOR COMPARISON 

******************************************************* // 
653.   // Code that compares the two ball type colors and will return their value if they are the 

same. 
654.   // NOTE: Two NONES will continue running the loop. This ensures the color sensor outputs 

an actual color. 
655.   if(ballType2 == ballType && ballType != 5) 
656.   { 
657.     return ballType; 
658.   } 
659.  
660.   // If the ball color is still NONE, continue running the loop. 
661.   else  
662.   
663.     if(COUNTERC >= 15) 
664.     // If the colors are measured 15 times and there is still no value, assign it as a UMICH ball 

and break the loop. 
665.     // This protects against balls being dropped or a ball outside of the color range (usually 

blues and yellows). 
666.     { 
667.       ballType = 1; 
668.       return ballType; 
669.     } 
670.  
671.   // Keep running the color sensor evaluation until above If statement is true 
672.   return evaluateColorSensor() ; 
673. } 
674.  
675. // End of function evaluateColorSensor() 
676.  
677.  
678. ////////////////////////////////////////////////////////////////////// 
679. // This is a function to update the encoder count in the Arduino.   // 
680. // It is called via an interrupt whenever the value on encoder      // 
681. // channel A or B changes.                                          // 
682. ////////////////////////////////////////////////////////////////////// 
683. void updateMotorPosition() { 
684.   // Bitwise shift left by one bit, to make room for a bit of new data: 

 



685.   encoderStatus <<= 1;  
686.   // Use a compound bitwise OR operator (|=) to read the A channel of the encoder (pin 2) 
687.   // and put that value into the rightmost bit of encoderStatus: 
688.   encoderStatus |= digitalRead(2);  
689.   // Bitwise shift left by one bit, to make room for a bit of new data: 
690.   encoderStatus <<= 1; 
691.   // Use a compound bitwise OR operator  (|=) to read the B channel of the encoder (pin 3) 
692.   // and put that value into the rightmost bit of encoderStatus: 
693.   encoderStatus |= digitalRead(3); 
694.   // encoderStatus is truncated to only contain the rightmost 4 bits by  using a  
695.   // bitwise AND operator on mstatus and 15(=1111): 
696.   encoderStatus &= 15; 
697.   if (encoderStatus==2 || encoderStatus==4 || encoderStatus==11 || encoderStatus==13) { 
698.     // the encoder status matches a bit pattern that requires counting up by one 
699.     motorPosition++;         // increase the encoder count by one 
700.   }  
701.   else if (encoderStatus == 1 || encoderStatus == 7 || encoderStatus == 8 || encoderStatus == 

14) { 
702.     // the encoder status does not match a bit pattern that requires counting up by one.  
703.     // Since this function is only called if something has changed, we have to count downwards 
704.     motorPosition--;         // decrease the encoder count by one 
705.   } 
706. } 
707. // End of function updateMotorPosition() 
708.  
709.  
710. ////////////////////////////////////////////////////////////////////// 
711. // This function sends a status of the controller to the serial     // 
712. // monitor.  Each character will take 85 microseconds to send, so   // 
713. // be selective in what you write out:                              // 
714. ////////////////////////////////////////////////////////////////////// 
715. void printStateToSerial() { 
716.   //*********************************************************************// 
717.   // Send a status of the controller to the serial monitor.  
718.   // Each character will take 85 microseconds to send, so be selective 
719.   // in what you write out: 
720.  
721.   //Serial.print("State Number:  [CALIBRATE = 1; WAIT = 2; MOVE_TO_CHUTE = 3; 

WAIT_FOR_BALL = 4; PUT_BALL = 5]: "); 
722.   Serial.print("State#: ");  
723.   Serial.print(state); 
724.  
725.   //Serial.print("Power switch [on/off]: "); 

 



726.   //Serial.print("  PWR: ");  
727.   //Serial.print(digitalRead(PIN_NR_ON_OFF_SWITCH)); 
728.  
729.   //Serial.print("      Motor Position [encoder counts]: "); 
730.   Serial.print("  MP: ");  
731.   Serial.print(motorPosition); 
732.  
733.   //Serial.print("      Motor Velocity [encoder counts / seconds]: "); 
734.   Serial.print("  MV: ");  
735.   Serial.print(motorVelocity); 
736.  
737.   //Serial.print("      Encoder Status [4 bit value]: "); 
738.   //Serial.print("  ES: ");  
739.   //Serial.print(encoderStatus); 
740.  
741.   //Serial.print("      Target Position [encoder counts]: "); 
742.   Serial.print("  TP: ");  
743.   Serial.print(targetPosition); 
744.  
745.   //Serial.print("      Position Error [encoder counts]: "); 
746.   Serial.print("  PE: ");  
747.   Serial.print(positionError); 
748.  
749.   //Serial.print("      Integrated Error [encoder counts * seconds]: "); 
750.   Serial.print("  IE: ");  
751.   Serial.print(integralError); 
752.  
753.   //Serial.print("      Velocity Error [encoder counts / seconds]: "); 
754.   Serial.print("  VE: ");  
755.   Serial.print(velocityError); 
756.  
757.   //Serial.print("      Desired Output Voltage [Volt]: "); 
758.   Serial.print("  DV: ");  
759.   Serial.print(desiredVoltage); 
760.  
761.  
762.   
763.   //Serial.print("      Motor Command [0-255]: "); 
764.   //Serial.print("  MC: ");  
765.   //Serial.print(motorCommand); 
766.  
767.   //Serial.print("      Execution Duration [microseconds]: "); 
768.   //Serial.print("  ED: ");  

 



769.   //Serial.print(executionDuration); 
770.  
771.   //Serial.print("      Raw signals from the color sensor: "); 
772.   //Serial.print("  R: ");  
773.   //Serial.print(red); 
774.   //Serial.print("  G: ");  
775.   //Serial.print(green); 
776.   //Serial.print("  B: ");  
777.   //Serial.print(blue); 
778.   //Serial.print("  C: ");  
779.   //Serial.print(clear); 
780.  
781.  // ALWAYS END WITH A NEWLINE.  SERIAL MONITOR WILL CRASH IF NOT 
782.   Serial.println(); // new line 
783. } 
784. // End of Serial Out 

Calculations:  

We did not do any calculations to determine the encoder count that led to our desired position.  This is 
because each of the test boards is slightly different and requires a different number of encoder counts to 
reach desired positions.  Calculating the ideal count is pointless since the actual count needed varies 
greatly between the testing environments and the final testing board. 

Bill of Materials:  

Part 
Number Part Name Material Dimension(s) Supplier Quantity 

Price (per 
item) Notes 

1 
Motor 
Gearmotor Steel 37Dx52L mm Kit 1 ----  

2 Arduino N/A 4” x 2.1” Kit 1 ----  

3 
Breadboar
d 

Plastic and 
metal 2.2” x 3.5” Kit 1 ----  

4 H-Bridge N/A 1.5” x 1.5” Kit 1 ----  

5 Fuse N/A 6” x 1” Kit 1 ----  

6 
Toggle 
Switch N/A 1” x .5” Kit 1 ----  

7 
Limit 
Switch N/S 1” x .75” Kit 1 ----  

 

 


